document.write( "Question 1182632: Given the representation matrix of a linear transformation over the basis B, how to find a basis for a different representation matrix for the same linear transformation in which a certain condition is required?
\n" ); document.write( "For example: \r
\n" ); document.write( "\n" ); document.write( "V = R2[x] (all the polynomials of power 2 or less over Real numbers)\r
\n" ); document.write( "\n" ); document.write( "Given the following basis:
\n" ); document.write( "B= {1, 1+x, x^2 -1}\r
\n" ); document.write( "\n" ); document.write( "Defining T: V -> V a linear transformation as following:
\n" ); document.write( "T(1) = 4 - 3x^2
\n" ); document.write( "T(1+x) = 4 + 4x + 3x^2
\n" ); document.write( "T(x^2 -1) = x^2 - 4\r
\n" ); document.write( "\n" ); document.write( "The representative matrix of T is:
\n" ); document.write( "1 3 -3
\n" ); document.write( "0 4 0 = [T]B
\n" ); document.write( "-3 3 1\r
\n" ); document.write( "\n" ); document.write( "If given that T is diagonalizable, and the eigenvalues of it are { 4, 4, -2}\r
\n" ); document.write( "\n" ); document.write( "Find a basis of V for which the representation matrix is a diagonal matrix.
\n" ); document.write( "

Algebra.Com's Answer #849916 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's how to find a basis for which the representation matrix of T is diagonal, given that T is diagonalizable:\r
\n" ); document.write( "\n" ); document.write( "**1. Eigenvalues and Eigenvectors:**\r
\n" ); document.write( "\n" ); document.write( "You're given the eigenvalues: λ₁ = 4, λ₂ = 4 (repeated), and λ₃ = -2. Since T is diagonalizable, there must be two linearly independent eigenvectors associated with the eigenvalue λ = 4.\r
\n" ); document.write( "\n" ); document.write( "* **For λ = 4:** Solve the equation (T - 4I)v = 0, where v is the eigenvector. In matrix form, using the given representation matrix [T]B:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "[ 1-4 3 -3 ] [x] [0]
\n" ); document.write( "[ 0 4-4 0 ] [y] = [0]
\n" ); document.write( "[ -3 3 1-4 ] [z] [0]
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "[ -3 3 -3 ] [x] [0]
\n" ); document.write( "[ 0 0 0 ] [y] = [0]
\n" ); document.write( "[ -3 3 -3 ] [z] [0]
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "This simplifies to -3x + 3y - 3z = 0, or x = y - z. We have two free variables. Let z = t and y = s. Then x = s - t. The eigenvectors associated with λ = 4 can be written as:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "[ s - t ]
\n" ); document.write( "[ s ]
\n" ); document.write( "[ t ] = s[1] + t[-1]
\n" ); document.write( "[ 1 ] [ 0 ]
\n" ); document.write( "[ 0 ] [ 1 ]
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "So, two linearly independent eigenvectors corresponding to λ = 4 (in the B basis) are [1, 1, 0]ᵀ and [-1, 0, 1]ᵀ.\r
\n" ); document.write( "\n" ); document.write( "* **For λ = -2:** Solve (T + 2I)v = 0:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "[ 1+2 3 -3 ] [x] [0]
\n" ); document.write( "[ 0 4+2 0 ] [y] = [0]
\n" ); document.write( "[ -3 3 1+2 ] [z] [0]
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "[ 3 3 -3 ] [x] [0]
\n" ); document.write( "[ 0 6 0 ] [y] = [0]
\n" ); document.write( "[ -3 3 3 ] [z] [0]
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "From this, we get y = 0 and 3x - 3z = 0, or x = z. Let x = t, then z = t. The eigenvector is:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "[ t ]
\n" ); document.write( "[ 0 ]
\n" ); document.write( "[ t ] = t [ 1 ]
\n" ); document.write( "[ 0 ]
\n" ); document.write( "[ 1 ]
\n" ); document.write( "```\r
\n" ); document.write( "\n" ); document.write( "So, an eigenvector corresponding to λ = -2 (in the B basis) is [1, 0, 1]ᵀ.\r
\n" ); document.write( "\n" ); document.write( "**2. Change of Basis:**\r
\n" ); document.write( "\n" ); document.write( "Now we have the eigenvectors in the B basis. We need to convert them to the standard basis (or any other basis you prefer) to get the eigenvectors in terms of polynomials. Recall that B = {1, 1+x, x²-1}.\r
\n" ); document.write( "\n" ); document.write( "* **Eigenvector [1, 1, 0]ᵀ (for λ = 4):**
\n" ); document.write( " 1*(1) + 1*(1+x) + 0*(x²-1) = 1 + 1 + x = 2 + x\r
\n" ); document.write( "\n" ); document.write( "* **Eigenvector [-1, 0, 1]ᵀ (for λ = 4):**
\n" ); document.write( " -1*(1) + 0*(1+x) + 1*(x²-1) = -1 + x² - 1 = x² - 2\r
\n" ); document.write( "\n" ); document.write( "* **Eigenvector [1, 0, 1]ᵀ (for λ = -2):**
\n" ); document.write( " 1*(1) + 0*(1+x) + 1*(x²-1) = 1 + x² - 1 = x²\r
\n" ); document.write( "\n" ); document.write( "**3. Diagonalizing Basis:**\r
\n" ); document.write( "\n" ); document.write( "The desired basis for which T is represented by a diagonal matrix is the set of eigenvectors we just found:\r
\n" ); document.write( "\n" ); document.write( "{2 + x, x² - 2, x²}\r
\n" ); document.write( "\n" ); document.write( "In this basis, the matrix representation of T will be diagonal, with the eigenvalues on the diagonal:\r
\n" ); document.write( "\n" ); document.write( "```
\n" ); document.write( "[ 4 0 0 ]
\n" ); document.write( "[ 0 4 0 ]
\n" ); document.write( "[ 0 0 -2 ]
\n" ); document.write( "```
\n" ); document.write( "
\n" ); document.write( "
\n" );