document.write( "Question 1209706: There are integers b, c for which both roots of the polynomial x^2 - x - 3 are also roots of the polynomial x^3 - bx^2 - c. Determine the ordered pair (b,c).
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #849884 by ikleyn(52943) You can put this solution on YOUR website! . \n" ); document.write( "There are integers b, c for which both roots of the polynomial x^2 - x - 3 \n" ); document.write( "are also roots of the polynomial x^3 - bx^2 - c. Determine the ordered pair (b,c). \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Let p and q be the roots of the polynomial x^2 - x - 3.\r\n" ); document.write( "\r\n" ); document.write( "Due to Vieta's theorem, \r\n" ); document.write( "\r\n" ); document.write( " p + q = 1, (1)\r\n" ); document.write( "\r\n" ); document.write( " pq = -3. (2)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "According to the problem, p and q are also the roots of the polynomial x^3 - bx^2 - c. \r\n" ); document.write( "Let r be the third root of this polynomial.\r\n" ); document.write( "\r\n" ); document.write( "Then, due to Vieta's theorem for polynomial x^3 - bx^2 - c\r\n" ); document.write( "\r\n" ); document.write( " p + q + r = b, (3)\r\n" ); document.write( "\r\n" ); document.write( " p*q + p*r + q*r = 0, (4) (coefficient at x in polynomial x^3 - bx^2 - c)\r\n" ); document.write( "\r\n" ); document.write( " p*q*r = c. (5)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In (3), replace p+q by 1, based on (3). In (5), replace p*q by -3, based on (2).\r\n" ); document.write( "Then from (3) an (4) you will have\r\n" ); document.write( "\r\n" ); document.write( " 1 + r = b, (6)\r\n" ); document.write( "\r\n" ); document.write( " -3r = c, (7) \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In equation (4), replace p*q by -3, based on (2). Then equation (4) takes the form\r\n" ); document.write( "\r\n" ); document.write( " -3 + pr + qr = 0, \r\n" ); document.write( "\r\n" ); document.write( "or\r\n" ); document.write( "\r\n" ); document.write( " p*r + q*r = 3,\r\n" ); document.write( "\r\n" ); document.write( " (p + q)*r = 3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "In the last equation, replace (p + q) by 1, based on (1). You will get\r\n" ); document.write( "\r\n" ); document.write( " 1*r = 3, i.e. r = 3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Now from (6) b = 1 + r = 1 + 3 = 4;\r\n" ); document.write( "\r\n" ); document.write( " from (7) c = -3r = -3*3 = -9.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. In polynomial x^3 - bx^2 - c, coefficients are b = 4, c = -9.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "At this point, the problem is solved completely.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |