document.write( "Question 1184200: The central statistical office publishes a variety of information on the Zambian
\n" );
document.write( "population. The following table shows this.
\n" );
document.write( "
\n" );
document.write( "AGE FREQUENCY
\n" );
document.write( "40 - 49 7
\n" );
document.write( "50 - 59 9
\n" );
document.write( "60 - 69 10
\n" );
document.write( "70 - 79 6
\n" );
document.write( "80 - 89 13
\n" );
document.write( "90 - 99 10
\n" );
document.write( "100 - 109 12
\n" );
document.write( "110 - 119 7
\n" );
document.write( "Compute the following:
\n" );
document.write( "i. The mean
\n" );
document.write( "ii. The median
\n" );
document.write( "iii. The mode
\n" );
document.write( "iv. The quartile deviation
\n" );
document.write( "v. The mean deviation
\n" );
document.write( "vi. The coefficient of variation \n" );
document.write( "
Algebra.Com's Answer #849869 by CPhill(1987) You can put this solution on YOUR website! Here's how to calculate the requested statistics for the Zambian population age data:\r \n" ); document.write( "\n" ); document.write( "**1. Calculate Midpoints of Age Intervals:**\r \n" ); document.write( "\n" ); document.write( "Since we have grouped data, we need to find the midpoint of each age interval to represent the ages in that group.\r \n" ); document.write( "\n" ); document.write( "| Age Interval | Frequency (f) | Midpoint (x) | \n" ); document.write( "|---|---|---| \n" ); document.write( "| 40 - 49 | 7 | 44.5 | \n" ); document.write( "| 50 - 59 | 9 | 54.5 | \n" ); document.write( "| 60 - 69 | 10 | 64.5 | \n" ); document.write( "| 70 - 79 | 6 | 74.5 | \n" ); document.write( "| 80 - 89 | 13 | 84.5 | \n" ); document.write( "| 90 - 99 | 10 | 94.5 | \n" ); document.write( "| 100 - 109 | 12 | 104.5 | \n" ); document.write( "| 110 - 119 | 7 | 114.5 |\r \n" ); document.write( "\n" ); document.write( "**2. Calculate f * x:**\r \n" ); document.write( "\n" ); document.write( "Multiply the frequency of each group by its midpoint.\r \n" ); document.write( "\n" ); document.write( "| Age Interval | Frequency (f) | Midpoint (x) | f * x | \n" ); document.write( "|---|---|---|---| \n" ); document.write( "| 40 - 49 | 7 | 44.5 | 311.5 | \n" ); document.write( "| 50 - 59 | 9 | 54.5 | 490.5 | \n" ); document.write( "| 60 - 69 | 10 | 64.5 | 645 | \n" ); document.write( "| 70 - 79 | 6 | 74.5 | 447 | \n" ); document.write( "| 80 - 89 | 13 | 84.5 | 1098.5 | \n" ); document.write( "| 90 - 99 | 10 | 94.5 | 945 | \n" ); document.write( "| 100 - 109 | 12 | 104.5 | 1254 | \n" ); document.write( "| 110 - 119 | 7 | 114.5 | 801.5 | \n" ); document.write( "| **Totals** | **74** | | **6000** |\r \n" ); document.write( "\n" ); document.write( "**i. Mean:**\r \n" ); document.write( "\n" ); document.write( "Mean (μ) = Σ(f * x) / Σf = 6000 / 74 ≈ 81.08\r \n" ); document.write( "\n" ); document.write( "**ii. Median:**\r \n" ); document.write( "\n" ); document.write( "* Total frequency (N) = 74 \n" ); document.write( "* The median is the average of the (N/2)th and ((N/2) + 1)th values. Since N is even, it's the average of the 37th and 38th values. \n" ); document.write( "* The cumulative frequencies are 7, 16, 26, 32, 45, 55, 67, 74. \n" ); document.write( "* Both the 37th and 38th values fall in the 80-89 age group. \n" ); document.write( "* Median = Midpoint of the 80-89 group = 84.5\r \n" ); document.write( "\n" ); document.write( "**iii. Mode:**\r \n" ); document.write( "\n" ); document.write( "The mode is the age group with the highest frequency. The 80-89 age group has the highest frequency (13).\r \n" ); document.write( "\n" ); document.write( "Mode = Midpoint of the 80-89 group = 84.5\r \n" ); document.write( "\n" ); document.write( "**iv. Quartile Deviation:**\r \n" ); document.write( "\n" ); document.write( "* Q1 (First Quartile): The value at (N/4) = 74/4 = 18.5. This falls in the 60-69 group. \n" ); document.write( " * Q1 = 60 + [(18.5 - 16)/10]*10=62.5 \n" ); document.write( "* Q3 (Third Quartile): The value at (3N/4) = 3 * 74/4 = 55.5. This falls in the 90-99 group. \n" ); document.write( " * Q3 = 90 + [(55.5 - 55)/10]*10=90.5 \n" ); document.write( "* Quartile Deviation = (Q3 - Q1) / 2 = (90.5 - 62.5) / 2 = 28/2 = 14\r \n" ); document.write( "\n" ); document.write( "**v. Mean Deviation:**\r \n" ); document.write( "\n" ); document.write( "1. Calculate the absolute deviations |x - μ| for each midpoint. \n" ); document.write( "2. Multiply each absolute deviation by its frequency (f * |x - μ|). \n" ); document.write( "3. Sum the results. \n" ); document.write( "4. Divide by the total frequency (N).\r \n" ); document.write( "\n" ); document.write( "| Age Interval | f | x | |x-μ| | f*|x-μ| | \n" ); document.write( "|---|---|---|---|---|---| \n" ); document.write( "| 40-49 | 7 | 44.5 | |36.58| |256.06| \n" ); document.write( "| 50-59 | 9 | 54.5 | |26.58| |239.22| \n" ); document.write( "| 60-69 | 10 | 64.5 | |16.58| |165.8| \n" ); document.write( "| 70-79 | 6 | 74.5 | |6.58| |39.48| \n" ); document.write( "| 80-89 | 13 | 84.5 | |3.42| |44.46| \n" ); document.write( "| 90-99 | 10 | 94.5 | |13.42| |134.2| \n" ); document.write( "| 100-109 | 12 | 104.5 | |23.42| |281.04| \n" ); document.write( "| 110-119 | 7 | 114.5 | |33.42| |233.94| \n" ); document.write( "| **Totals** | 74 | | | | 1394.7 |\r \n" ); document.write( "\n" ); document.write( "Mean Deviation = 1394.7 / 74 ≈ 18.85\r \n" ); document.write( "\n" ); document.write( "**vi. Coefficient of Variation:**\r \n" ); document.write( "\n" ); document.write( "Coefficient of Variation (CV) = (Standard Deviation / Mean) * 100\r \n" ); document.write( "\n" ); document.write( "We need to calculate the standard deviation first.\r \n" ); document.write( "\n" ); document.write( "Standard Deviation (σ) = sqrt[Σf(x-μ)²/N]\r \n" ); document.write( "\n" ); document.write( "= sqrt[Σf(x-μ)²/N]\r \n" ); document.write( "\n" ); document.write( "= sqrt[10695.82/74] = sqrt[144.54] = 12.02\r \n" ); document.write( "\n" ); document.write( "CV = (12.02 / 81.08) * 100 ≈ 14.82% \n" ); document.write( " \n" ); document.write( " |