document.write( "Question 1209696: Find all positive integers n for which n^2 - 19n + 59 + n^2 + 4n - 31 is a perfect square.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #849827 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Let the given expression be equal to a perfect square $k^2$, where $k$ is a non-negative integer. \n" ); document.write( "We have \n" ); document.write( "\begin{align*} \label{eq:1} n^2 - 19n + 59 + n^2 + 4n - 31 &= k^2 \\ 2n^2 - 15n + 28 &= k^2\end{align*} \n" ); document.write( "Multiplying by 8 on both sides, we have \n" ); document.write( "\begin{align*} 16n^2 - 120n + 224 &= 8k^2 \\ (4n)^2 - 2(4n)(15) + 15^2 - 15^2 + 224 &= 8k^2 \\ (4n - 15)^2 - 225 + 224 &= 8k^2 \\ (4n - 15)^2 - 1 &= 8k^2 \\ (4n - 15)^2 - 8k^2 &= 1\end{align*} \n" ); document.write( "Let $x = 4n - 15$. Then we have the Pell equation $x^2 - 8k^2 = 1$. \n" ); document.write( "The fundamental solution is $(x_1, k_1) = (3, 1)$. \n" ); document.write( "The general solution is given by $x_n + k_n\sqrt{8} = (3 + \sqrt{8})^n$. \n" ); document.write( "When $n = 1$, we have $x_1 = 3$ and $k_1 = 1$. \n" ); document.write( "$4n - 15 = 3 \implies 4n = 18 \implies n = 4.5$, which is not an integer. \n" ); document.write( "When $n = 2$, we have $x_2 + k_2\sqrt{8} = (3 + \sqrt{8})^2 = 9 + 8 + 6\sqrt{8} = 17 + 6\sqrt{8}$. \n" ); document.write( "$x_2 = 17$, $k_2 = 6$. \n" ); document.write( "$4n - 15 = 17 \implies 4n = 32 \implies n = 8$. \n" ); document.write( "$2(8^2) - 15(8) + 28 = 128 - 120 + 28 = 36 = 6^2$. \n" ); document.write( "When $n = 3$, we have $x_3 + k_3\sqrt{8} = (3 + \sqrt{8})^3 = (3 + \sqrt{8})(17 + 6\sqrt{8}) = 51 + 18\sqrt{8} + 17\sqrt{8} + 48 = 99 + 35\sqrt{8}$. \n" ); document.write( "$x_3 = 99$, $k_3 = 35$. \n" ); document.write( "$4n - 15 = 99 \implies 4n = 114 \implies n = 28.5$, not an integer. \n" ); document.write( "When $n = 4$, we have $x_4 + k_4\sqrt{8} = (3 + \sqrt{8})^4 = (17+6\sqrt{8})^2 = 289 + 72 + 204\sqrt{8} = 361 + 204\sqrt{8}$. \n" ); document.write( "$x_4 = 361$, $k_4 = 204$. \n" ); document.write( "$4n - 15 = 361 \implies 4n = 376 \implies n = 94$. \n" ); document.write( "$2(94^2) - 15(94) + 28 = 17672 - 1410 + 28 = 16290$, not a perfect square.\r \n" ); document.write( "\n" ); document.write( "When $n = 3$, $2n^2 - 15n + 28 = 18 - 45 + 28 = 1$. \n" ); document.write( "$n = 3$ is a solution. \n" ); document.write( "When $n = 4$, $2n^2 - 15n + 28 = 32 - 60 + 28 = 0$. \n" ); document.write( "$n = 4$ is a solution.\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{3, 4, 8}$ \n" ); document.write( " \n" ); document.write( " |