document.write( "Question 1209692: Find all integers x for which x^3 = (x - 1)^3 + (x - 2)^3 + (x - 3)^3 + (x - 4)^3 + (x - 5)^3 + (x - 6)^3 + (x - 7)^3. \n" ); document.write( "
Algebra.Com's Answer #849822 by ikleyn(52926) You can put this solution on YOUR website! . \n" ); document.write( "Find all integers x for which x^3 = (x - 1)^3 + (x - 2)^3 + (x - 3)^3 + (x - 4)^3 + (x - 5)^3 + (x - 6)^3 + (x - 7)^3. \n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \r\n" ); document.write( "Let's consider this equation\r\n" ); document.write( "\r\n" ); document.write( " x^3 = (x - 1)^3 + (x - 2)^3 + (x - 3)^3 + (x - 4)^3 + (x - 5)^3 + (x - 6)^3 + (x - 7)^3. (1)\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " I am going to prove that there are no such integer numbers, \r\n" ); document.write( " that satisfy this equation.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Let's consider the numbers modulo 3.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "If x is divisible by 3, then the table for x-1, x-2, x-3, x-4, x-5, x-6 and x-7 mod 3 is this\r\n" ); document.write( "\r\n" ); document.write( " x-1 x-2 x-3 x-4 x-5 x-6 x-7 \r\n" ); document.write( " mod 3 -1 1 0 -1 1 0 -1\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The table for (x-1)^3, (x-2)^3, (x-3)^3, (x-4)^3, (x-5)^3, (x-6)^3 and (x-7)^3 mod 3 is this\r\n" ); document.write( "\r\n" ); document.write( " (x-1)^3 (x-2)^3 (x-3)^3 (x-4)^3 (x-5)^3 (x-6)^3 (x-7)^3\r\n" ); document.write( " mod 3 -1 1 0 -1 1 0 -1\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The sum of remainders \"mod 3\" is -1 + 1 + 0 -1 + 1 + 0 -1 = -1,\r\n" ); document.write( "while x^3 mod 3 is 0 in this case.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " +-------------------------------------------------------------+\r\n" ); document.write( " | It means that the sum in the right side of equation (1) |\r\n" ); document.write( " | can not be equal to the left side: | \r\n" ); document.write( " | they have different remainders when divided by 3. |\r\n" ); document.write( " +-------------------------------------------------------------+\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The same idea works for x = 1 mod 3. Indeed, then the tables are these \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " x-1 x-2 x-3 x-4 x-5 x-6 x-7 \r\n" ); document.write( " mod 3 0 -1 1 0 -1 1 0\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The table for (x-1)^3, (x-2)^3, (x-3)^3, (x-4)^3, (x-5)^3, (x-6)^3 and (x-7)^3 mod 3 is this\r\n" ); document.write( "\r\n" ); document.write( " (x-1)^3 (x-2)^3 (x-3)^3 (x-4)^3 (x-5)^3 (x-6)^3 (x-7)^3\r\n" ); document.write( " mod 3 0 -1 1 0 -1 1 0\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The sum of remainders \"mod 3\" is 0 +-1 + 1 + 0 - 1 + 1 + 0 = 0,\r\n" ); document.write( "while x^3 mod 3 is 1 in this case.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " +-------------------------------------------------------------+\r\n" ); document.write( " | It means that the sum in the right side of equation (1) |\r\n" ); document.write( " | can not be equal to the left side: | \r\n" ); document.write( " | they have different remainders when divided by 3. |\r\n" ); document.write( " +-------------------------------------------------------------+\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The same idea works for x = 2 mod 3. Indeed, then the tables are these \r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " x-1 x-2 x-3 x-4 x-5 x-6 x-7 \r\n" ); document.write( " mod 3 1 0 -1 1 0 -1 1\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The table for (x-1)^3, (x-2)^3, (x-3)^3, (x-4)^3, (x-5)^3, (x-6)^3 and (x-7)^3 mod 3 is this\r\n" ); document.write( "\r\n" ); document.write( " (x-1)^3 (x-2)^3 (x-3)^3 (x-4)^3 (x-5)^3 (x-6)^3 (x-7)^3\r\n" ); document.write( " mod 3 1 0 -1 1 0 -1 1\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "The sum of remainders \"mod 3\" is 1 + 0 - 1 + 1 + 0 - 1 + 1 = 1,\r\n" ); document.write( "while x^3 mod 3 is -1 in this case.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( " +-------------------------------------------------------------+\r\n" ); document.write( " | It means that the sum in the right side of equation (1) |\r\n" ); document.write( " | can not be equal to the left side: | \r\n" ); document.write( " | they have different remainders when divided by 3. |\r\n" ); document.write( " +-------------------------------------------------------------+\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "Thus, considering all possible case for (x mod 3), we proved that \r\n" ); document.write( "equation (1) can not be valid.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "It this point, the problem is solved completely.\r\n" ); document.write( "\r\n" ); document.write( "\r\n" ); document.write( "ANSWER. The given equation has no solutions in integer numbers.\r\n" ); document.write( "\r \n" ); document.write( "\n" ); document.write( "Solved.\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( " \n" ); document.write( " |