document.write( "Question 1209686: Suppose the polynomial f(x) is of degree 3 and satisfies f(3) = 2, f(4) = -4, f(5) = 6, and f(8) = 8.\r
\n" );
document.write( "\n" );
document.write( " \r
\n" );
document.write( "\n" );
document.write( "Determine the value of f(0). \n" );
document.write( "
Algebra.Com's Answer #849804 by CPhill(1987) You can put this solution on YOUR website! Let $f(x)$ be a polynomial of degree 3. We are given the following values: \n" ); document.write( "$f(3) = 2$ \n" ); document.write( "$f(4) = -4$ \n" ); document.write( "$f(5) = 6$ \n" ); document.write( "$f(8) = 8$\r \n" ); document.write( "\n" ); document.write( "We can use the Lagrange interpolation formula to find the polynomial $f(x)$: \n" ); document.write( "\[f(x) = \sum_{i=0}^3 y_i L_i(x)\] \n" ); document.write( "where $y_i$ are the given function values and $L_i(x)$ are the Lagrange basis polynomials.\r \n" ); document.write( "\n" ); document.write( "In our case, the points are $(3, 2), (4, -4), (5, 6), (8, 8)$.\r \n" ); document.write( "\n" ); document.write( "\[L_0(x) = \frac{(x-4)(x-5)(x-8)}{(3-4)(3-5)(3-8)} = \frac{(x-4)(x-5)(x-8)}{(-1)(-2)(-5)} = -\frac{1}{10}(x-4)(x-5)(x-8)\] \n" ); document.write( "\[L_1(x) = \frac{(x-3)(x-5)(x-8)}{(4-3)(4-5)(4-8)} = \frac{(x-3)(x-5)(x-8)}{(1)(-1)(-4)} = \frac{1}{4}(x-3)(x-5)(x-8)\] \n" ); document.write( "\[L_2(x) = \frac{(x-3)(x-4)(x-8)}{(5-3)(5-4)(5-8)} = \frac{(x-3)(x-4)(x-8)}{(2)(1)(-3)} = -\frac{1}{6}(x-3)(x-4)(x-8)\] \n" ); document.write( "\[L_3(x) = \frac{(x-3)(x-4)(x-5)}{(8-3)(8-4)(8-5)} = \frac{(x-3)(x-4)(x-5)}{(5)(4)(3)} = \frac{1}{60}(x-3)(x-4)(x-5)\]\r \n" ); document.write( "\n" ); document.write( "Then, \n" ); document.write( "\[f(x) = 2L_0(x) - 4L_1(x) + 6L_2(x) + 8L_3(x)\]\r \n" ); document.write( "\n" ); document.write( "We want to find $f(0)$: \n" ); document.write( "\[f(0) = 2L_0(0) - 4L_1(0) + 6L_2(0) + 8L_3(0)\] \n" ); document.write( "\[L_0(0) = -\frac{1}{10}(-4)(-5)(-8) = -\frac{1}{10}(-160) = 16\] \n" ); document.write( "\[L_1(0) = \frac{1}{4}(-3)(-5)(-8) = \frac{1}{4}(-120) = -30\] \n" ); document.write( "\[L_2(0) = -\frac{1}{6}(-3)(-4)(-8) = -\frac{1}{6}(-96) = 16\] \n" ); document.write( "\[L_3(0) = \frac{1}{60}(-3)(-4)(-5) = \frac{1}{60}(-60) = -1\]\r \n" ); document.write( "\n" ); document.write( "\[f(0) = 2(16) - 4(-30) + 6(16) + 8(-1) = 32 + 120 + 96 - 8 = 240\]\r \n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{240}$ \n" ); document.write( " \n" ); document.write( " |