document.write( "Question 1209661: Find the conic section represented by the equation\r
\n" ); document.write( "\n" ); document.write( "3x^2 + y^2 + 9x - 5y - 20 = 8x^2 + 6x + 47\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #849777 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's how to identify the conic section:\r
\n" ); document.write( "\n" ); document.write( "1. **Rearrange the equation:** Move all terms to one side:\r
\n" ); document.write( "\n" ); document.write( " 3x² + y² + 9x - 5y - 20 - 8x² - 6x - 47 = 0
\n" ); document.write( " -5x² + 3x + y² - 5y - 67 = 0\r
\n" ); document.write( "\n" ); document.write( "2. **Multiply by -1 (optional, but makes some calculations easier):**\r
\n" ); document.write( "\n" ); document.write( " 5x² - 3x - y² + 5y + 67 = 0\r
\n" ); document.write( "\n" ); document.write( "3. **Complete the square for both x and y:**\r
\n" ); document.write( "\n" ); document.write( " 5(x² - (3/5)x) - (y² - 5y) + 67 = 0
\n" ); document.write( " 5(x² - (3/5)x + (3/10)²) - 5(3/10)² - (y² - 5y + (5/2)²) + (5/2)² + 67 = 0
\n" ); document.write( " 5(x - 3/10)² - 5(9/100) - (y - 5/2)² + 25/4 + 67 = 0
\n" ); document.write( " 5(x - 3/10)² - 9/20 - (y - 5/2)² + 25/4 + 67 = 0
\n" ); document.write( " 5(x - 3/10)² - (y - 5/2)² + 67 - 9/20 + 125/20 = 0
\n" ); document.write( " 5(x - 3/10)² - (y - 5/2)² + 67 + 116/20 = 0
\n" ); document.write( " 5(x - 3/10)² - (y - 5/2)² + 67 + 5.8 = 0
\n" ); document.write( " 5(x - 3/10)² - (y - 5/2)² + 72.8 = 0
\n" ); document.write( " 5(x - 3/10)² - (y - 5/2)² = -72.8\r
\n" ); document.write( "\n" ); document.write( "4. **Divide by -72.8:**\r
\n" ); document.write( "\n" ); document.write( " [5(x - 3/10)²] / -72.8 - [(y - 5/2)²] / -72.8 = 1
\n" ); document.write( " [(x - 3/10)²] / (-72.8/5) - [(y - 5/2)²] / -72.8 = 1
\n" ); document.write( " [(x - 3/10)²] / -14.56 - [(y - 5/2)²] / -72.8 = 1\r
\n" ); document.write( "\n" ); document.write( "5. **Analyze the equation:**\r
\n" ); document.write( "\n" ); document.write( " The equation is in the form:\r
\n" ); document.write( "\n" ); document.write( " (x²/a²) - (y²/b²) = 1 (Hyperbola)
\n" ); document.write( " OR
\n" ); document.write( " -(x²/a²) + (y²/b²) = 1 (Hyperbola)\r
\n" ); document.write( "\n" ); document.write( "Since both the x² and y² terms are present and have *opposite* signs, the equation represents a **hyperbola**. The negative signs simply determine the orientation of the hyperbola (whether it opens horizontally or vertically). Since the x^2 term is negative, this is a hyperbola that opens up and down.
\n" ); document.write( "
\n" ); document.write( "
\n" );