document.write( "Question 1209655: The graph of the equation
\n" ); document.write( "4x^2 - 12x + 4y^2 + 16y - 15 = 10x + 25y + 28
\n" ); document.write( "is a circle. Find the radius of the circle.
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #849748 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's how to find the radius of the circle:\r
\n" ); document.write( "\n" ); document.write( "1. **Rewrite the equation by grouping x and y terms:**\r
\n" ); document.write( "\n" ); document.write( "4x² - 12x + 4y² + 16y - 15 = 10x + 25y + 28
\n" ); document.write( "4x² - 22x + 4y² - 9y = 43\r
\n" ); document.write( "\n" ); document.write( "2. **Complete the square for x and y:**\r
\n" ); document.write( "\n" ); document.write( "* **For x:**
\n" ); document.write( " 4(x² - (11/2)x)
\n" ); document.write( " To complete the square, take half of -11/2 which is -11/4 and square it to get 121/16.
\n" ); document.write( " 4(x² - (11/2)x + 121/16) - 4(121/16)\r
\n" ); document.write( "\n" ); document.write( "* **For y:**
\n" ); document.write( " 4(y² - (9/4)y)
\n" ); document.write( " To complete the square, take half of -9/4 which is -9/8 and square it to get 81/64
\n" ); document.write( " 4(y² - (9/4)y + 81/64) - 4(81/64)\r
\n" ); document.write( "\n" ); document.write( "3. **Substitute the completed squares back into the equation:**\r
\n" ); document.write( "\n" ); document.write( "4(x² - (11/2)x + 121/16) - 4(121/16) + 4(y² - (9/4)y + 81/64) - 4(81/64) = 43
\n" ); document.write( "4(x - 11/4)² - 121/4 + 4(y - 9/8)² - 81/16 = 43\r
\n" ); document.write( "\n" ); document.write( "4. **Simplify and rewrite in standard circle form:**\r
\n" ); document.write( "\n" ); document.write( "Multiply the entire equation by 16 to eliminate fractions:\r
\n" ); document.write( "\n" ); document.write( "64(x - 11/4)² - 484 + 64(y - 9/8)² - 81 = 688
\n" ); document.write( "64(x - 11/4)² + 64(y - 9/8)² = 688 + 484 + 81
\n" ); document.write( "64(x - 11/4)² + 64(y - 9/8)² = 1253\r
\n" ); document.write( "\n" ); document.write( "Divide by 64:
\n" ); document.write( "(x - 11/4)² + (y - 9/8)² = 1253/64\r
\n" ); document.write( "\n" ); document.write( "5. **Identify the radius:**\r
\n" ); document.write( "\n" ); document.write( "The standard form of a circle's equation is (x - h)² + (y - k)² = r², where (h, k) is the center and r is the radius.\r
\n" ); document.write( "\n" ); document.write( "In our equation, r² = 1253/64. Therefore, the radius is:\r
\n" ); document.write( "\n" ); document.write( "r = √(1253/64) = √1253 / 8\r
\n" ); document.write( "\n" ); document.write( "Final Answer: The final answer is $\boxed{\frac{\sqrt{1253}}{8}}$
\n" ); document.write( "
\n" ); document.write( "
\n" );