document.write( "Question 1209648: Determine the range of the function $(x) = -4x^2-8x-6 + 3x^2 - 17x + 10. Enter your answer in interval notation. \n" ); document.write( "
Algebra.Com's Answer #849743 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! 1. **Simplify the function:** \n" ); document.write( " Combine like terms: \n" ); document.write( " f(x) = (-4x² + 3x²) + (-8x - 17x) + (-6 + 10) \n" ); document.write( " f(x) = -x² - 25x + 4\r \n" ); document.write( "\n" ); document.write( "2. **Find the vertex:** \n" ); document.write( " The x-coordinate of the vertex is given by x = -b / 2a, where a = -1 and b = -25. \n" ); document.write( " x = -(-25) / (2 * -1) = 25 / -2 = -12.5\r \n" ); document.write( "\n" ); document.write( "3. **Find the y-coordinate of the vertex:** \n" ); document.write( " Substitute x = -12.5 into the simplified function: \n" ); document.write( " f(-12.5) = -(-12.5)² - 25(-12.5) + 4 \n" ); document.write( " f(-12.5) = -156.25 + 312.5 + 4 \n" ); document.write( " f(-12.5) = 160.25\r \n" ); document.write( "\n" ); document.write( "4. **Determine the range:** \n" ); document.write( " Since the coefficient of the x² term is negative, the parabola opens downward. This means the vertex represents the maximum value of the function. The range will be all y-values less than or equal to the y-coordinate of the vertex.\r \n" ); document.write( "\n" ); document.write( "Therefore, the range of the function is $(-\infty, 160.25]$. \n" ); document.write( " \n" ); document.write( " |