document.write( "Question 1209641: Find all nonzero constants $a$ such that
\n" );
document.write( "ax^2 + 7x + 2 = 5x^2 + 23x - 12
\n" );
document.write( "has only one distinct root.
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #849725 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here's how to find the values of *a* for which the given quadratic equation has only one distinct root:\r \n" ); document.write( "\n" ); document.write( "1. **Rewrite the equation in standard form:**\r \n" ); document.write( "\n" ); document.write( " Combine like terms to get the equation in the form Ax² + Bx + C = 0:\r \n" ); document.write( "\n" ); document.write( " (a - 5)x² + (7 - 23)x + (2 + 12) = 0 \n" ); document.write( " (a - 5)x² - 16x + 14 = 0\r \n" ); document.write( "\n" ); document.write( "2. **Apply the discriminant condition:**\r \n" ); document.write( "\n" ); document.write( " A quadratic equation has only one distinct root (a double root) when its discriminant (B² - 4AC) is equal to zero. In our equation:\r \n" ); document.write( "\n" ); document.write( " * A = (a - 5) \n" ); document.write( " * B = -16 \n" ); document.write( " * C = 14\r \n" ); document.write( "\n" ); document.write( " So, we set the discriminant equal to zero:\r \n" ); document.write( "\n" ); document.write( " (-16)² - 4 * (a - 5) * 14 = 0 \n" ); document.write( " 256 - 56(a - 5) = 0 \n" ); document.write( " 256 - 56a + 280 = 0 \n" ); document.write( " 536 - 56a = 0\r \n" ); document.write( "\n" ); document.write( "3. **Solve for *a*:**\r \n" ); document.write( "\n" ); document.write( " 56a = 536 \n" ); document.write( " a = 536 / 56 \n" ); document.write( " a = 67/7\r \n" ); document.write( "\n" ); document.write( "Therefore, the only nonzero constant *a* for which the given equation has only one distinct root is a = 67/7. \n" ); document.write( " \n" ); document.write( " |