document.write( "Question 1209598: What is the domain of the function f(x) = sqrt(6x - 3 + x^2)? \n" ); document.write( "
Algebra.Com's Answer #849672 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! The domain of a square root function is restricted to non-negative values under the radical. Therefore, we need to find the values of x for which:\r \n" ); document.write( "\n" ); document.write( "6x - 3 + x² ≥ 0\r \n" ); document.write( "\n" ); document.write( "Rearranging the terms, we get:\r \n" ); document.write( "\n" ); document.write( "x² + 6x - 3 ≥ 0\r \n" ); document.write( "\n" ); document.write( "To find the values of x that satisfy this inequality, we first find the roots of the corresponding quadratic equation:\r \n" ); document.write( "\n" ); document.write( "x² + 6x - 3 = 0\r \n" ); document.write( "\n" ); document.write( "Using the quadratic formula:\r \n" ); document.write( "\n" ); document.write( "x = (-b ± √(b² - 4ac)) / 2a \n" ); document.write( "x = (-6 ± √(6² - 4 * 1 * -3)) / 2 * 1 \n" ); document.write( "x = (-6 ± √(36 + 12)) / 2 \n" ); document.write( "x = (-6 ± √48) / 2 \n" ); document.write( "x = (-6 ± 4√3) / 2 \n" ); document.write( "x = -3 ± 2√3\r \n" ); document.write( "\n" ); document.write( "So, the roots are x = -3 - 2√3 and x = -3 + 2√3.\r \n" ); document.write( "\n" ); document.write( "Since the quadratic has a positive leading coefficient, the parabola opens upwards. This means the inequality x² + 6x - 3 ≥ 0 is satisfied when x is less than or equal to the smaller root, or x is greater than or equal to the larger root.\r \n" ); document.write( "\n" ); document.write( "Therefore, the domain of f(x) is:\r \n" ); document.write( "\n" ); document.write( "(-∞, -3 - 2√3] ∪ [-3 + 2√3, ∞) \n" ); document.write( " \n" ); document.write( " |