document.write( "Question 1209616: Suppose the domain of f is (-1,3). Define the function g by
\n" ); document.write( "g(x) = f((x + 1)(x - 2)).
\n" ); document.write( "What is the domain of g?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #849667 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's how to determine the domain of g:\r
\n" ); document.write( "\n" ); document.write( "**1. Understand the relationship between f and g:**\r
\n" ); document.write( "\n" ); document.write( "The function g(x) is defined in terms of f. The input to f is the expression (x + 1)(x - 2). For g(x) to be defined, this expression must fall within the domain of f, which is (-1, 3).\r
\n" ); document.write( "\n" ); document.write( "**2. Set up the inequality:**\r
\n" ); document.write( "\n" ); document.write( "We need to find the values of x for which:\r
\n" ); document.write( "\n" ); document.write( "-1 < (x + 1)(x - 2) < 3\r
\n" ); document.write( "\n" ); document.write( "**3. Solve the inequalities:**\r
\n" ); document.write( "\n" ); document.write( "We'll solve this as two separate inequalities:\r
\n" ); document.write( "\n" ); document.write( "* **-1 < (x + 1)(x - 2)**
\n" ); document.write( " -1 < x² - x - 2
\n" ); document.write( " 0 < x² - x - 1\r
\n" ); document.write( "\n" ); document.write( " To solve this, we find the roots of the quadratic x² - x - 1 = 0 using the quadratic formula:\r
\n" ); document.write( "\n" ); document.write( " x = (1 ± √(1 + 4))/2 = (1 ± √5)/2\r
\n" ); document.write( "\n" ); document.write( " So, x < (1 - √5)/2 or x > (1 + √5)/2\r
\n" ); document.write( "\n" ); document.write( "* **(x + 1)(x - 2) < 3**
\n" ); document.write( " x² - x - 2 < 3
\n" ); document.write( " x² - x - 5 < 0\r
\n" ); document.write( "\n" ); document.write( " Again, find the roots of x² - x - 5 = 0:\r
\n" ); document.write( "\n" ); document.write( " x = (1 ± √(1 + 20))/2 = (1 ± √21)/2\r
\n" ); document.write( "\n" ); document.write( " So, (1 - √21)/2 < x < (1 + √21)/2\r
\n" ); document.write( "\n" ); document.write( "**4. Combine the solutions:**\r
\n" ); document.write( "\n" ); document.write( "We need to find where *both* inequalities are true. Let's approximate the roots:\r
\n" ); document.write( "\n" ); document.write( "* (1 - √5)/2 ≈ -0.618
\n" ); document.write( "* (1 + √5)/2 ≈ 1.618
\n" ); document.write( "* (1 - √21)/2 ≈ -1.791
\n" ); document.write( "* (1 + √21)/2 ≈ 2.791\r
\n" ); document.write( "\n" ); document.write( "Combining the inequalities, we get:\r
\n" ); document.write( "\n" ); document.write( "(1 - √21)/2 < x < (1 - √5)/2 *or* (1 + √5)/2 < x < (1 + √21)/2\r
\n" ); document.write( "\n" ); document.write( "**5. State the domain of g:**\r
\n" ); document.write( "\n" ); document.write( "The domain of g is the union of the two intervals:\r
\n" ); document.write( "\n" ); document.write( "((1 - √21)/2, (1 - √5)/2) ∪ ((1 + √5)/2, (1 + √21)/2)
\n" ); document.write( "
\n" ); document.write( "
\n" );