document.write( "Question 1209571: If x⁵ = 1 with x ≠ 1
\n" ); document.write( "find the value of
\n" ); document.write( "1/(1+x²) + 1/(1+x⁴) + 1/(1+x) + 1/(1+x³)
\n" ); document.write( "

Algebra.Com's Answer #849541 by ikleyn(52782)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "If x⁵ = 1 with x ≠ 1, find the value of
\n" ); document.write( "1/(1+x²) + 1/(1+x⁴) + 1/(1+x) + 1/(1+x³)
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "In this problem, all numbers \"x%5Bk%5D\", for which  x^5 = 1,  are five different complex roots of equation\r\n" );
document.write( "\r\n" );
document.write( "    \"x%5E5\" = 1,  k = 1, 2, 3, 4, 5.    (1)\r\n" );
document.write( "\r\n" );
document.write( "including real root x = 1.  \r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "THREFORE, the numbers  \"w%5Bk%5D\" = \"1%2Bx%5Bk%5D\"  are the five complex roots of equation \r\n" );
document.write( "    \"%28w-1%29%5E5\" = 1.    (2)\r\n" );
document.write( "\r\n" );
document.write( "including real number w = 2, which corresponds to real numer 1, which is the root of (1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, the reciprocal numbers  \"1%2F%281%2Bx%5Bk%5D%29\" are the roots of this equation\r\n" );
document.write( "    \"%281%2Fw-1%29%5E5\" = 1.    (3)\r\n" );
document.write( "\r\n" );
document.write( "including real number w = 1/2, which corresponds to real numer 1, which is the root of (1).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Equation (3) can be written in equivalent polynomial form\r\n" );
document.write( "\r\n" );
document.write( "    \"%281-w%29%5E5\" = w^5.    (4)\r\n" );
document.write( "\r\n" );
document.write( "or\r\n" );
document.write( "\r\n" );
document.write( "    1 - 5w + 10w^2 - 10w^3 + 5w^4 - w^5 = w^5,\r\n" );
document.write( "\r\n" );
document.write( "or\r\n" );
document.write( "\r\n" );
document.write( "    2w^5 - 5w^4 + 10w^3 - 10w^2 + 5w - 1 = 0.    (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the sum of four addends\r\n" );
document.write( "\r\n" );
document.write( "    \"1%2F%281%2Bx%5E2%29\" + \"1%2F%281%2Bx%5E4%29\" + \"1%2F%281%2Bx%29\" + \"1%2F%281%2Bx%5E3%29+\"    (6)\r\n" );
document.write( "\r\n" );
document.write( "is the sum of all  four complex roots of equation (5), that are not real numbers.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Let's add  \"1%2F2\"  to the sum (6).   We will get the sum  S\r\n" );
document.write( "\r\n" );
document.write( "    S = \"1%2F2\" + \"1%2F%281%2Bx%5E2%29\" + \"1%2F%281%2Bx%5E4%29\" + \"1%2F%281%2Bx%29\" +\"+1%2F%281%2Bx%5E3%29+\".    (7)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now this sum (7) is the sum of all complex roots of equation (5).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "According to Vieta's theorem,  this sum (7) is the coefficient at \"x%5E4\" divided by the coefficient at x^5 \r\n" );
document.write( "of equation (5), taken with the opposite sign.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "This ratio of the mentioned coefficients in (5) is  \"%28-5%29%2F2\" = \"-5%2F2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Hence, the sum (7) is equal to   -\"%28-5%2F2%29\"  = \"5%2F2\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "But the problem asks about S - \"1%2F2\",  and we finally find this value   \r\n" );
document.write( "\r\n" );
document.write( "    S - \"1%2F2\" = \"1%2F%281%2Bx%5E2%29\" + \"1%2F%281%2Bx%5E4%29\" + \"1%2F%281%2Bx%29\" +\"+1%2F%281%2Bx%5E3%29+\" = \"5%2F2\" - \"1%2F2\" = \"4%2F2\" = 2.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "At this point, the problem is solved completely, to the very end.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "ANSWER.  If x⁵ = 1 with x ≠ 1,  then the sum  1/(1+x²) + 1/(1+x⁴) + 1/(1+x) + 1/(1+x³)  is  2.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "Solved.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "This problem/solution is of the  MOST  UPPER  LEVEL  of the problems of this kind.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "By the way, my solution shows that the problem can be generalized
\n" ); document.write( "for more high degrees in equation (1) and more longer sums
\n" ); document.write( "with the similar expressions for the roots.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );