document.write( "Question 1185949: A bacteria culture grows with constant relative growth rate .the bacteria count was 200 after 2 hours and 14000 was 5 hours .what is the relative growth rate .what is the initial size of culture . Find the number of cells after 4.5 hours. Find the rate growth after 5.5 hours and when will the population reach 25 000 \n" ); document.write( "
Algebra.Com's Answer #849504 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's how to solve this exponential growth problem:\r
\n" ); document.write( "\n" ); document.write( "**1. Set up the exponential growth formula:**\r
\n" ); document.write( "\n" ); document.write( "The formula for population growth is: P(t) = P₀ * e^(rt)\r
\n" ); document.write( "\n" ); document.write( "Where:\r
\n" ); document.write( "\n" ); document.write( "* P(t) is the population at time t
\n" ); document.write( "* P₀ is the initial population
\n" ); document.write( "* r is the relative growth rate
\n" ); document.write( "* t is the time\r
\n" ); document.write( "\n" ); document.write( "**2. Use the given information to create two equations:**\r
\n" ); document.write( "\n" ); document.write( "* Equation 1: 200 = P₀ * e^(2r) (after 2 hours)
\n" ); document.write( "* Equation 2: 14000 = P₀ * e^(5r) (after 5 hours)\r
\n" ); document.write( "\n" ); document.write( "**3. Solve for r (relative growth rate):**\r
\n" ); document.write( "\n" ); document.write( "Divide Equation 2 by Equation 1:\r
\n" ); document.write( "\n" ); document.write( "14000 / 200 = (P₀ * e^(5r)) / (P₀ * e^(2r))
\n" ); document.write( "70 = e^(3r)\r
\n" ); document.write( "\n" ); document.write( "Take the natural logarithm of both sides:\r
\n" ); document.write( "\n" ); document.write( "ln(70) = 3r
\n" ); document.write( "r = ln(70) / 3
\n" ); document.write( "r ≈ 1.424 / 3
\n" ); document.write( "r ≈ 0.475 (or 47.5%)\r
\n" ); document.write( "\n" ); document.write( "**4. Solve for P₀ (initial size of the culture):**\r
\n" ); document.write( "\n" ); document.write( "Substitute the value of r back into either Equation 1 or Equation 2. Let's use Equation 1:\r
\n" ); document.write( "\n" ); document.write( "200 = P₀ * e^(2 * 0.475)
\n" ); document.write( "200 = P₀ * e^0.95
\n" ); document.write( "P₀ = 200 / e^0.95
\n" ); document.write( "P₀ ≈ 200 / 2.586
\n" ); document.write( "P₀ ≈ 77\r
\n" ); document.write( "\n" ); document.write( "**5. Find the number of cells after 4.5 hours:**\r
\n" ); document.write( "\n" ); document.write( "P(4.5) = 77 * e^(0.475 * 4.5)
\n" ); document.write( "P(4.5) ≈ 77 * e^2.1375
\n" ); document.write( "P(4.5) ≈ 77 * 8.468
\n" ); document.write( "P(4.5) ≈ 652\r
\n" ); document.write( "\n" ); document.write( "**6. Find the rate of growth after 5.5 hours:**\r
\n" ); document.write( "\n" ); document.write( "The rate of growth is given by the derivative of the population function:\r
\n" ); document.write( "\n" ); document.write( "dP/dt = r * P(t)\r
\n" ); document.write( "\n" ); document.write( "First, find the population at t = 5.5:\r
\n" ); document.write( "\n" ); document.write( "P(5.5) = 77 * e^(0.475 * 5.5) ≈ 77 * 11.85 ≈ 912.45\r
\n" ); document.write( "\n" ); document.write( "Now, find the rate of growth:\r
\n" ); document.write( "\n" ); document.write( "dP/dt = 0.475 * 912.45 ≈ 434 bacteria/hour\r
\n" ); document.write( "\n" ); document.write( "**7. When will the population reach 25,000?**\r
\n" ); document.write( "\n" ); document.write( "25000 = 77 * e^(0.475t)
\n" ); document.write( "25000/77 = e^(0.475t)
\n" ); document.write( "ln(25000/77) = 0.475t
\n" ); document.write( "t = ln(25000/77) / 0.475
\n" ); document.write( "t ≈ ln(324.675) / 0.475
\n" ); document.write( "t ≈ 5.78 / 0.475
\n" ); document.write( "t ≈ 12.17 hours\r
\n" ); document.write( "\n" ); document.write( "**Summary of Answers:**\r
\n" ); document.write( "\n" ); document.write( "* Relative growth rate (r) ≈ 47.5% or 0.475
\n" ); document.write( "* Initial size of the culture (P₀) ≈ 77
\n" ); document.write( "* Number of cells after 4.5 hours ≈ 652
\n" ); document.write( "* Rate of growth after 5.5 hours ≈ 434 bacteria/hour
\n" ); document.write( "* Time to reach 25,000 cells ≈ 12.17 hours
\n" ); document.write( "
\n" ); document.write( "
\n" );