document.write( "Question 1186000: Solve for the unknown calories using the concept of linear equations
\n" ); document.write( "1.) 126x + 198y = 150
\n" ); document.write( "2.) 338x + 43y = 303
\n" ); document.write( " With graphing method and subtitution, elimination, determinants
\n" ); document.write( "

Algebra.Com's Answer #849498 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's how to solve the system of equations using the methods you requested:\r
\n" ); document.write( "\n" ); document.write( "**1. Graphing Method:**\r
\n" ); document.write( "\n" ); document.write( "1. **Rewrite the equations in slope-intercept form (y = mx + b):**
\n" ); document.write( " * 126x + 198y = 150 => y = (-126/198)x + (150/198) => y ≈ -0.636x + 0.758
\n" ); document.write( " * 338x + 43y = 303 => y = (-338/43)x + (303/43) => y ≈ -7.86x + 7.047\r
\n" ); document.write( "\n" ); document.write( "2. **Plot the lines:** Graph both equations on the same coordinate plane. The point where the lines intersect is the solution.\r
\n" ); document.write( "\n" ); document.write( "3. **Approximate the solution:** From the graph, you'll see that the lines intersect somewhere around x ≈ 0.8 and y ≈ 0.3. Graphing isn't always perfectly precise, so these are just estimates.\r
\n" ); document.write( "\n" ); document.write( "**2. Substitution Method:**\r
\n" ); document.write( "\n" ); document.write( "1. **Solve one equation for one variable:** Let's solve the first equation for y:
\n" ); document.write( " y = (-126/198)x + (150/198)\r
\n" ); document.write( "\n" ); document.write( "2. **Substitute:** Substitute this expression for y into the second equation:
\n" ); document.write( " 338x + 43((-126/198)x + (150/198)) = 303\r
\n" ); document.write( "\n" ); document.write( "3. **Simplify and solve for x:**
\n" ); document.write( " 338x - (5418/198)x + (6450/198) = 303
\n" ); document.write( " (66864/198)x - (5418/198)x = (60054/198) - (6450/198)
\n" ); document.write( " (61446/198)x = (53604/198)
\n" ); document.write( " x = 53604 / 61446
\n" ); document.write( " x ≈ 0.872\r
\n" ); document.write( "\n" ); document.write( "4. **Substitute x back to find y:** Substitute the value of x into either of the original equations. Using the first equation is simpler.
\n" ); document.write( " 126(0.872) + 198y = 150
\n" ); document.write( " 110 + 198y = 150
\n" ); document.write( " 198y = 40
\n" ); document.write( " y ≈ 0.202\r
\n" ); document.write( "\n" ); document.write( "**3. Elimination Method:**\r
\n" ); document.write( "\n" ); document.write( "1. **Multiply equations to match coefficients:** We want to eliminate either x or y. Let's eliminate y. Multiply the first equation by 43 and the second equation by 198:
\n" ); document.write( " * (126x + 198y = 150) * 43 => 5418x + 8514y = 6450
\n" ); document.write( " * (338x + 43y = 303) * 198 => 66864x + 8514y = 60054\r
\n" ); document.write( "\n" ); document.write( "2. **Subtract the equations:** Subtract the first new equation from the second:
\n" ); document.write( " 61446x = 53604\r
\n" ); document.write( "\n" ); document.write( "3. **Solve for x:**
\n" ); document.write( " x ≈ 0.872\r
\n" ); document.write( "\n" ); document.write( "4. **Substitute x back to find y:** Substitute the value of x into either of the original equations.
\n" ); document.write( " 126(0.872) + 198y = 150
\n" ); document.write( " y ≈ 0.202\r
\n" ); document.write( "\n" ); document.write( "**4. Determinant Method (Cramer's Rule):**\r
\n" ); document.write( "\n" ); document.write( "1. **Set up the coefficient matrix (D) and the matrices for x (Dx) and y (Dy):**\r
\n" ); document.write( "\n" ); document.write( " D = | 126 198 |
\n" ); document.write( " | 338 43 |\r
\n" ); document.write( "\n" ); document.write( " Dx = | 150 198 |
\n" ); document.write( " | 303 43 |\r
\n" ); document.write( "\n" ); document.write( " Dy = | 126 150 |
\n" ); document.write( " | 338 303 |\r
\n" ); document.write( "\n" ); document.write( "2. **Calculate the determinants:**
\n" ); document.write( " * det(D) = (126 * 43) - (198 * 338) = -61446
\n" ); document.write( " * det(Dx) = (150 * 43) - (198 * 303) = -53604
\n" ); document.write( " * det(Dy) = (126 * 303) - (150 * 338) = -12300\r
\n" ); document.write( "\n" ); document.write( "3. **Solve for x and y:**
\n" ); document.write( " x = det(Dx) / det(D) = -53604 / -61446 ≈ 0.872
\n" ); document.write( " y = det(Dy) / det(D) = -12300 / -61446 ≈ 0.200\r
\n" ); document.write( "\n" ); document.write( "**Solution:**\r
\n" ); document.write( "\n" ); document.write( "The solution using all methods converges to approximately:\r
\n" ); document.write( "\n" ); document.write( "* x ≈ 0.872
\n" ); document.write( "* y ≈ 0.202
\n" ); document.write( "
\n" ); document.write( "
\n" );