document.write( "Question 1186939: Suppose that O=(0,0), A=(3.4,0), and B=(2.81,1.92). The arc between points B and C is 12.92 units long. \r
\n" ); document.write( "\n" ); document.write( "A. What is the value of (theta)1, the radian measure of Angle AOB?
\n" ); document.write( "B. What is the value of (theta)2, the radian measure of Angle BOC?
\n" ); document.write( "C. What are the x- and y-coordinates of point C?
\n" ); document.write( "

Algebra.Com's Answer #849325 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's the solution, broken down step by step:\r
\n" ); document.write( "\n" ); document.write( "**A. θ₁ (Angle AOB):**\r
\n" ); document.write( "\n" ); document.write( "1. **Find the lengths of OA and OB:**
\n" ); document.write( " * OA = √((3.4 - 0)² + (0 - 0)²) = 3.4
\n" ); document.write( " * OB = √((2.81 - 0)² + (1.92 - 0)²) = √(7.8961 + 3.6864) = √11.5825 ≈ 3.403\r
\n" ); document.write( "\n" ); document.write( "2. **Use the dot product formula:**
\n" ); document.write( " * OA • OB = |OA| * |OB| * cos(θ₁)
\n" ); document.write( " * (3.4 * 2.81) + (0 * 1.92) = 3.4 * 3.403 * cos(θ₁)
\n" ); document.write( " * 9.554 = 11.5702 * cos(θ₁)
\n" ); document.write( " * cos(θ₁) = 9.554 / 11.5702 ≈ 0.8257\r
\n" ); document.write( "\n" ); document.write( "3. **Solve for θ₁:**
\n" ); document.write( " * θ₁ = arccos(0.8257) ≈ 0.5994 radians\r
\n" ); document.write( "\n" ); document.write( "**B. θ₂ (Angle BOC):**\r
\n" ); document.write( "\n" ); document.write( "1. **Find the radius of the circle:** Since OA and OB are radii, and we are working with a circular arc BC, OA is the radius. r = 3.4\r
\n" ); document.write( "\n" ); document.write( "2. **Use the arc length formula:**
\n" ); document.write( " * Arc length (s) = r * θ₂
\n" ); document.write( " * 12.92 = 3.4 * θ₂
\n" ); document.write( " * θ₂ = 12.92 / 3.4 ≈ 3.8 radians\r
\n" ); document.write( "\n" ); document.write( "**C. Coordinates of Point C:**\r
\n" ); document.write( "\n" ); document.write( "1. **Find the angle from the x-axis to OC:** This is θ₁ + θ₂ ≈ 0.5994 + 3.8 = 4.3994 radians.\r
\n" ); document.write( "\n" ); document.write( "2. **Use the coordinates formula:**
\n" ); document.write( " * x = r * cos(θ₁ + θ₂) = 3.4 * cos(4.3994) ≈ -1.0468
\n" ); document.write( " * y = r * sin(θ₁ + θ₂) = 3.4 * sin(4.3994) ≈ -3.2348\r
\n" ); document.write( "\n" ); document.write( "**Therefore:**\r
\n" ); document.write( "\n" ); document.write( "* θ₁ (Angle AOB) ≈ 0.5994 radians
\n" ); document.write( "* θ₂ (Angle BOC) ≈ 3.8 radians
\n" ); document.write( "* Coordinates of point C ≈ (-1.0468, -3.2348)
\n" ); document.write( "
\n" ); document.write( "
\n" );