document.write( "Question 1188511: The bivariate distribution of X and Y is described below:\r
\n" ); document.write( "\n" ); document.write( "X
\n" ); document.write( "Y 1 2
\n" ); document.write( "1 0.22 0.47
\n" ); document.write( "2 0.14 0.17\r
\n" ); document.write( "\n" ); document.write( "A. Find the marginal probability distribution of X.\r
\n" ); document.write( "\n" ); document.write( "1:
\n" ); document.write( "2: \r
\n" ); document.write( "\n" ); document.write( "B. Find the marginal probability distribution of Y.\r
\n" ); document.write( "\n" ); document.write( "1:
\n" ); document.write( "2: \r
\n" ); document.write( "\n" ); document.write( "C. Compute the mean and variance of X.\r
\n" ); document.write( "\n" ); document.write( "Mean =
\n" ); document.write( "Variance = \r
\n" ); document.write( "\n" ); document.write( "C. Compute the mean and variance of Y.\r
\n" ); document.write( "\n" ); document.write( "Mean =
\n" ); document.write( "Variance =
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #849303 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
Here's the solution:\r
\n" ); document.write( "\n" ); document.write( "**A. Marginal Probability Distribution of X:**\r
\n" ); document.write( "\n" ); document.write( "The marginal probability distribution of X is found by summing the joint probabilities for each value of X across all values of Y.\r
\n" ); document.write( "\n" ); document.write( "* P(X=1) = P(X=1, Y=1) + P(X=1, Y=2) = 0.22 + 0.47 = 0.69
\n" ); document.write( "* P(X=2) = P(X=2, Y=1) + P(X=2, Y=2) = 0.14 + 0.17 = 0.31\r
\n" ); document.write( "\n" ); document.write( "**B. Marginal Probability Distribution of Y:**\r
\n" ); document.write( "\n" ); document.write( "The marginal probability distribution of Y is found by summing the joint probabilities for each value of Y across all values of X.\r
\n" ); document.write( "\n" ); document.write( "* P(Y=1) = P(X=1, Y=1) + P(X=2, Y=1) = 0.22 + 0.14 = 0.36
\n" ); document.write( "* P(Y=2) = P(X=1, Y=2) + P(X=2, Y=2) = 0.47 + 0.17 = 0.64\r
\n" ); document.write( "\n" ); document.write( "**C. Mean and Variance of X:**\r
\n" ); document.write( "\n" ); document.write( "* **Mean (E[X]):** E[X] = Σ [x * P(X=x)] = (1 * 0.69) + (2 * 0.31) = 0.69 + 0.62 = 1.31
\n" ); document.write( "* **Variance (Var[X]):** Var[X] = E[X²] - (E[X])²\r
\n" ); document.write( "\n" ); document.write( " * E[X²] = Σ [x² * P(X=x)] = (1² * 0.69) + (2² * 0.31) = 0.69 + 1.24 = 1.93
\n" ); document.write( " * Var[X] = 1.93 - (1.31)² = 1.93 - 1.7161 = 0.2139\r
\n" ); document.write( "\n" ); document.write( "**D. Mean and Variance of Y:**\r
\n" ); document.write( "\n" ); document.write( "* **Mean (E[Y]):** E[Y] = Σ [y * P(Y=y)] = (1 * 0.36) + (2 * 0.64) = 0.36 + 1.28 = 1.64
\n" ); document.write( "* **Variance (Var[Y]):** Var[Y] = E[Y²] - (E[Y])²\r
\n" ); document.write( "\n" ); document.write( " * E[Y²] = Σ [y² * P(Y=y)] = (1² * 0.36) + (2² * 0.64) = 0.36 + 2.56 = 2.92
\n" ); document.write( " * Var[Y] = 2.92 - (1.64)² = 2.92 - 2.6896 = 0.2304\r
\n" ); document.write( "\n" ); document.write( "**Answers:**\r
\n" ); document.write( "\n" ); document.write( "* **A. Marginal Probability Distribution of X:**
\n" ); document.write( " * 1: 0.69
\n" ); document.write( " * 2: 0.31
\n" ); document.write( "* **B. Marginal Probability Distribution of Y:**
\n" ); document.write( " * 1: 0.36
\n" ); document.write( " * 2: 0.64
\n" ); document.write( "* **C. Mean and Variance of X:**
\n" ); document.write( " * Mean = 1.31
\n" ); document.write( " * Variance = 0.2139
\n" ); document.write( "* **D. Mean and Variance of Y:**
\n" ); document.write( " * Mean = 1.64
\n" ); document.write( " * Variance = 0.2304
\n" ); document.write( "
\n" ); document.write( "
\n" );