document.write( "Question 1188786: (1 point) The heights of Vulcans - an imaginary humanoid in Star Trek- are normally distributed. Suppose that a simple random sample of 11 Vulcans have a standard deviation of 25.8. Find the confidence Interval for the standard deviation of the entire population with 80% confidence.\r
\n" );
document.write( "\n" );
document.write( "1. Find the critical values š2šæ=š21āš¼/2 and š2š
=š2š¼/2 that correspond to 80% degree of confidence and the sample size š=11.
\n" );
document.write( "š2šæ=
\n" );
document.write( " š2š
= \r
\n" );
document.write( "\n" );
document.write( "2. Find the upper and lower limits of 80% confidence Interval for the standard deviation of the entire population.\r
\n" );
document.write( "\n" );
document.write( "The lower limit of the 80% confidence interval = \r
\n" );
document.write( "\n" );
document.write( "The upper limit of the 80% confidence interval =
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #849296 by CPhill(1987) You can put this solution on YOUR website! Here's how to calculate the confidence interval for the standard deviation of Vulcan heights:\r \n" ); document.write( "\n" ); document.write( "**1. Find the critical chi-square values:**\r \n" ); document.write( "\n" ); document.write( "* **Degrees of freedom (df):** df = n - 1 = 11 - 1 = 10 \n" ); document.write( "* **Confidence level:** 80%, so α = 1 - 0.80 = 0.20 \n" ); document.write( "* **α/2:** 0.20 / 2 = 0.10 \n" ); document.write( "* **1 - α/2:** 1 - 0.10 = 0.90\r \n" ); document.write( "\n" ); document.write( "Now, look up the chi-square values in a chi-square table or use a calculator for df = 10:\r \n" ); document.write( "\n" ); document.write( "* ϲ(0.90, 10) = ϲ_L ā 4.865 (Lower critical value) \n" ); document.write( "* ϲ(0.10, 10) = ϲ_R ā 15.987 (Upper critical value)\r \n" ); document.write( "\n" ); document.write( "**2. Calculate the confidence interval limits:**\r \n" ); document.write( "\n" ); document.write( "* **Sample standard deviation (s):** 25.8 \n" ); document.write( "* **Sample size (n):** 11\r \n" ); document.write( "\n" ); document.write( "* **Lower Limit:** \n" ); document.write( " sqrt[ (n-1) * s² / ϲ_R ] = sqrt[ (10 * 25.8²) / 15.987 ] ā sqrt(419.92) ā 20.49\r \n" ); document.write( "\n" ); document.write( "* **Upper Limit:** \n" ); document.write( " sqrt[ (n-1) * s² / ϲ_L ] = sqrt[ (10 * 25.8²) / 4.865 ] ā sqrt(1390.94) ā 37.29\r \n" ); document.write( "\n" ); document.write( "**Answers:**\r \n" ); document.write( "\n" ); document.write( "1. ϲ_L ā 4.865 \n" ); document.write( " ϲ_R ā 15.987\r \n" ); document.write( "\n" ); document.write( "2. Lower Limit ā 20.49 \n" ); document.write( " Upper Limit ā 37.29\r \n" ); document.write( "\n" ); document.write( "Therefore, you are 80% confident that the population standard deviation of Vulcan heights is between approximately 20.49 and 37.29. \n" ); document.write( " \n" ); document.write( " |