document.write( "Question 1188789: (1 point) The weights of unicorns are normally distributed. Suppose that a simple random sample of 12 unicorns have a standard deviation of 20.8. Estimate the standard deviation of the entire population with 80% confidence.\r
\n" );
document.write( "\n" );
document.write( "LCL =
\n" );
document.write( "UCL =
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #849294 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here's how to calculate the confidence interval for the population standard deviation:\r \n" ); document.write( "\n" ); document.write( "**1. Identify the given information:**\r \n" ); document.write( "\n" ); document.write( "* Sample size (n) = 12 \n" ); document.write( "* Sample standard deviation (s) = 20.8 \n" ); document.write( "* Confidence level = 80%\r \n" ); document.write( "\n" ); document.write( "**2. Find the degrees of freedom:**\r \n" ); document.write( "\n" ); document.write( "Degrees of freedom (df) = n - 1 = 12 - 1 = 11\r \n" ); document.write( "\n" ); document.write( "**3. Find the chi-square values:**\r \n" ); document.write( "\n" ); document.write( "For an 80% confidence level, the alpha (α) is 1 - 0.80 = 0.20. We need to find the chi-square values for α/2 and 1-α/2.\r \n" ); document.write( "\n" ); document.write( "* α/2 = 0.20 / 2 = 0.10 \n" ); document.write( "* 1 - α/2 = 1 - 0.10 = 0.90\r \n" ); document.write( "\n" ); document.write( "Using a chi-square table or calculator, look up the values for df = 11:\r \n" ); document.write( "\n" ); document.write( "* χ²(0.10, 11) ≈ 19.675 \n" ); document.write( "* χ²(0.90, 11) ≈ 5.578\r \n" ); document.write( "\n" ); document.write( "**4. Calculate the lower confidence limit (LCL):**\r \n" ); document.write( "\n" ); document.write( "LCL = sqrt[ (n-1) * s² / χ²(α/2, df) ] \n" ); document.write( "LCL = sqrt[ (11 * 20.8²) / 19.675 ] \n" ); document.write( "LCL = sqrt[ 4758.72 / 19.675 ] \n" ); document.write( "LCL = sqrt[241.85] \n" ); document.write( "LCL ≈ 15.55\r \n" ); document.write( "\n" ); document.write( "**5. Calculate the upper confidence limit (UCL):**\r \n" ); document.write( "\n" ); document.write( "UCL = sqrt[ (n-1) * s² / χ²(1-α/2, df) ] \n" ); document.write( "UCL = sqrt[ (11 * 20.8²) / 5.578 ] \n" ); document.write( "UCL = sqrt[ 4758.72 / 5.578 ] \n" ); document.write( "UCL = sqrt[853.14] \n" ); document.write( "UCL ≈ 29.21\r \n" ); document.write( "\n" ); document.write( "**Answer:**\r \n" ); document.write( "\n" ); document.write( "LCL ≈ 15.55 \n" ); document.write( "UCL ≈ 29.21\r \n" ); document.write( "\n" ); document.write( "Therefore, we are 80% confident that the population standard deviation of unicorn weights is between approximately 15.55 and 29.21. \n" ); document.write( " \n" ); document.write( " |