document.write( "Question 1189369: A discrete random variable x has the following probability distribution:\r
\n" );
document.write( "\n" );
document.write( "x 0 1 2 3
\n" );
document.write( "P(X=x) q 4p^2 p 0.7-4p^2\r
\n" );
document.write( "\n" );
document.write( "a. Find an expression for q in term of p
\n" );
document.write( "b. Find the value of p which gives the largest value of E(X)
\n" );
document.write( "c. Hence find the largest value of E(X) \n" );
document.write( "
Algebra.Com's Answer #849272 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! **a. Find an expression for q in terms of p**\r \n" ); document.write( "\n" ); document.write( "The sum of all probabilities in a probability distribution must equal 1. Therefore,\r \n" ); document.write( "\n" ); document.write( "q + 4p² + p + 0.7 - 4p² = 1\r \n" ); document.write( "\n" ); document.write( "q + p + 0.7 = 1\r \n" ); document.write( "\n" ); document.write( "q = 1 - 0.7 - p\r \n" ); document.write( "\n" ); document.write( "**q = 0.3 - p**\r \n" ); document.write( "\n" ); document.write( "**b. Find the value of p which gives the largest value of E(X)**\r \n" ); document.write( "\n" ); document.write( "The expected value of X, E(X), is given by:\r \n" ); document.write( "\n" ); document.write( "E(X) = 0*q + 1*(4p²) + 2*p + 3*(0.7 - 4p²)\r \n" ); document.write( "\n" ); document.write( "E(X) = 4p² + 2p + 2.1 - 12p²\r \n" ); document.write( "\n" ); document.write( "E(X) = -8p² + 2p + 2.1\r \n" ); document.write( "\n" ); document.write( "To find the value of p that maximizes E(X), we can take the derivative of E(X) with respect to p and set it to zero.\r \n" ); document.write( "\n" ); document.write( "d(E(X))/dp = -16p + 2\r \n" ); document.write( "\n" ); document.write( "Setting the derivative to zero:\r \n" ); document.write( "\n" ); document.write( "-16p + 2 = 0\r \n" ); document.write( "\n" ); document.write( "16p = 2\r \n" ); document.write( "\n" ); document.write( "p = 2/16\r \n" ); document.write( "\n" ); document.write( "**p = 0.125**\r \n" ); document.write( "\n" ); document.write( "To confirm that this is a maximum, we can take the second derivative:\r \n" ); document.write( "\n" ); document.write( "d²(E(X))/dp² = -16\r \n" ); document.write( "\n" ); document.write( "Since the second derivative is negative, this confirms that p = 0.125 gives a maximum value for E(X).\r \n" ); document.write( "\n" ); document.write( "**c. Hence find the largest value of E(X)**\r \n" ); document.write( "\n" ); document.write( "Substitute p = 0.125 into the expression for E(X):\r \n" ); document.write( "\n" ); document.write( "E(X) = -8(0.125)² + 2(0.125) + 2.1\r \n" ); document.write( "\n" ); document.write( "E(X) = -8(0.015625) + 0.25 + 2.1\r \n" ); document.write( "\n" ); document.write( "E(X) = -0.125 + 0.25 + 2.1\r \n" ); document.write( "\n" ); document.write( "**E(X) = 2.225**\r \n" ); document.write( "\n" ); document.write( "Therefore, the largest value of E(X) is 2.225. \n" ); document.write( " |