document.write( "Question 1189862: Solve the following problem by simplex method.
\n" );
document.write( "Max Z = 8x1 + 16x2
\n" );
document.write( "Subject to: x1 + x2 200
\n" );
document.write( " x2 125
\n" );
document.write( " 3x1 + 6x2 900
\n" );
document.write( " Where x1, x2 0 non-negativity condition\r
\n" );
document.write( "
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #849260 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here's how to solve the given linear programming problem using the simplex method:\r \n" ); document.write( "\n" ); document.write( "**1. Convert Inequalities to Equations:**\r \n" ); document.write( "\n" ); document.write( "Introduce slack variables (s1, s2, s3) to convert the inequalities into equations:\r \n" ); document.write( "\n" ); document.write( "* x1 + x2 + s1 = 200 \n" ); document.write( "* x2 + s2 = 125 \n" ); document.write( "* 3x1 + 6x2 + s3 = 900\r \n" ); document.write( "\n" ); document.write( "**2. Set up the Initial Simplex Tableau:**\r \n" ); document.write( "\n" ); document.write( "| | x1 | x2 | s1 | s2 | s3 | RHS | \n" ); document.write( "|---|---|---|---|---|---|---| \n" ); document.write( "| Z | -8 | -16 | 0 | 0 | 0 | 0 | \n" ); document.write( "| | 1 | 1 | 1 | 0 | 0 | 200 | \n" ); document.write( "| | 0 | 1 | 0 | 1 | 0 | 125 | \n" ); document.write( "| | 3 | 6 | 0 | 0 | 1 | 900 |\r \n" ); document.write( "\n" ); document.write( "**3. Identify the Pivot Column:**\r \n" ); document.write( "\n" ); document.write( "The pivot column is the column with the most negative entry in the Z row. In this case, it's the x2 column (-16).\r \n" ); document.write( "\n" ); document.write( "**4. Identify the Pivot Row:**\r \n" ); document.write( "\n" ); document.write( "Divide the RHS values by the corresponding entries in the pivot column. The smallest non-negative result indicates the pivot row.\r \n" ); document.write( "\n" ); document.write( "* 200 / 1 = 200 \n" ); document.write( "* 125 / 1 = 125 \n" ); document.write( "* 900 / 6 = 150\r \n" ); document.write( "\n" ); document.write( "The pivot row is the second row.\r \n" ); document.write( "\n" ); document.write( "**5. Pivot:**\r \n" ); document.write( "\n" ); document.write( "The pivot element is the intersection of the pivot column and pivot row (1). Make the pivot element 1 (it already is) and all other elements in the pivot column 0.\r \n" ); document.write( "\n" ); document.write( "| | x1 | x2 | s1 | s2 | s3 | RHS | \n" ); document.write( "|---|---|---|---|---|---|---| \n" ); document.write( "| Z | -8 | 0 | 0 | 16 | 0 | 2000 | \n" ); document.write( "| | 1 | 0 | 1 | -1 | 0 | 75 | \n" ); document.write( "| | 0 | 1 | 0 | 1 | 0 | 125 | \n" ); document.write( "| | 3 | 0 | 0 | -6 | 1 | 150 |\r \n" ); document.write( "\n" ); document.write( "**6. Repeat Steps 3-5:**\r \n" ); document.write( "\n" ); document.write( "* Pivot Column: x1 (-8) \n" ); document.write( "* Pivot Row: First Row (75/1 is the smallest) \n" ); document.write( "* Pivot:\r \n" ); document.write( "\n" ); document.write( "| | x1 | x2 | s1 | s2 | s3 | RHS | \n" ); document.write( "|---|---|---|---|---|---|---| \n" ); document.write( "| Z | 0 | 0 | 8 | 8 | 0 | 2600 | \n" ); document.write( "| | 1 | 0 | 1 | -1 | 0 | 75 | \n" ); document.write( "| | 0 | 1 | 0 | 1 | 0 | 125 | \n" ); document.write( "| | 0 | 0 | -3 | -3 | 1 | -75 |\r \n" ); document.write( "\n" ); document.write( "**7. Optimal Solution:**\r \n" ); document.write( "\n" ); document.write( "Since there are no more negative entries in the Z row, the optimal solution is reached.\r \n" ); document.write( "\n" ); document.write( "* x1 = 50 \n" ); document.write( "* x2 = 125 \n" ); document.write( "* Z = 2400\r \n" ); document.write( "\n" ); document.write( "Therefore, the maximum value of Z is 2400 when x1 = 50 and x2 = 125. \n" ); document.write( " \n" ); document.write( " |