document.write( "Question 1191315: show that mean is 3p and variance is 3pq of binomial distribution \n" ); document.write( "
Algebra.Com's Answer #849226 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! You're asking to show that for a binomial distribution with *n* = 3 trials, the mean is 3*p* and the variance is 3*p*q*, where *p* is the probability of success on a single trial and *q* = 1 - *p* is the probability of failure.\r \n" ); document.write( "\n" ); document.write( "Here's the proof:\r \n" ); document.write( "\n" ); document.write( "**1. Probability Mass Function:**\r \n" ); document.write( "\n" ); document.write( "The probability mass function for a binomial distribution is given by:\r \n" ); document.write( "\n" ); document.write( "P(X = k) = (nCk) * p^k * q^(n-k)\r \n" ); document.write( "\n" ); document.write( "where nCk is the binomial coefficient \"n choose k\".\r \n" ); document.write( "\n" ); document.write( "In our case, *n* = 3, so the possible values for *k* (number of successes) are 0, 1, 2, and 3. The probabilities are:\r \n" ); document.write( "\n" ); document.write( "* P(X = 0) = (3C0) * p^0 * q^3 = q^3 \n" ); document.write( "* P(X = 1) = (3C1) * p^1 * q^2 = 3pq^2 \n" ); document.write( "* P(X = 2) = (3C2) * p^2 * q^1 = 3p^2q \n" ); document.write( "* P(X = 3) = (3C3) * p^3 * q^0 = p^3\r \n" ); document.write( "\n" ); document.write( "**2. Mean (Expected Value):**\r \n" ); document.write( "\n" ); document.write( "The mean (or expected value) of a discrete random variable is given by:\r \n" ); document.write( "\n" ); document.write( "E(X) = Σ [x * P(X = x)] (summed over all possible values of x)\r \n" ); document.write( "\n" ); document.write( "For our binomial distribution:\r \n" ); document.write( "\n" ); document.write( "E(X) = 0 * q^3 + 1 * 3pq^2 + 2 * 3p^2q + 3 * p^3 \n" ); document.write( "E(X) = 0 + 3pq^2 + 6p^2q + 3p^3 \n" ); document.write( "E(X) = 3p(q^2 + 2pq + p^2) \n" ); document.write( "E(X) = 3p(p + q)^2\r \n" ); document.write( "\n" ); document.write( "Since p + q = 1:\r \n" ); document.write( "\n" ); document.write( "E(X) = 3p * 1^2 \n" ); document.write( "E(X) = 3p\r \n" ); document.write( "\n" ); document.write( "Therefore, the mean of the binomial distribution with n=3 is 3p.\r \n" ); document.write( "\n" ); document.write( "**3. Variance:**\r \n" ); document.write( "\n" ); document.write( "The variance of a discrete random variable is given by:\r \n" ); document.write( "\n" ); document.write( "Var(X) = E(X^2) - [E(X)]^2\r \n" ); document.write( "\n" ); document.write( "First, we need to calculate E(X^2):\r \n" ); document.write( "\n" ); document.write( "E(X^2) = Σ [x^2 * P(X = x)]\r \n" ); document.write( "\n" ); document.write( "E(X^2) = 0^2 * q^3 + 1^2 * 3pq^2 + 2^2 * 3p^2q + 3^2 * p^3 \n" ); document.write( "E(X^2) = 0 + 3pq^2 + 12p^2q + 9p^3\r \n" ); document.write( "\n" ); document.write( "Now, we can calculate the variance:\r \n" ); document.write( "\n" ); document.write( "Var(X) = E(X^2) - [E(X)]^2 \n" ); document.write( "Var(X) = (3pq^2 + 12p^2q + 9p^3) - (3p)^2 \n" ); document.write( "Var(X) = 3pq^2 + 12p^2q + 9p^3 - 9p^2 \n" ); document.write( "Var(X) = 3p(q^2 + 4pq + 3p^2 - 3p) \n" ); document.write( "Var(X) = 3p[q^2 + 2pq + p^2 + 2pq + 2p^2 - 3p] \n" ); document.write( "Var(X) = 3p[(q+p)^2 + 2p(q+p) - 3p] \n" ); document.write( "Var(X) = 3p[1 + 2p - 3p] \n" ); document.write( "Var(X) = 3p(1-p) \n" ); document.write( "Var(X) = 3pq\r \n" ); document.write( "\n" ); document.write( "Therefore, the variance of the binomial distribution with n=3 is 3pq. \n" ); document.write( " \n" ); document.write( " |