document.write( "Question 1191241: Please prove the following arguments (10 questions, 1 point each):
\n" );
document.write( "(1) P ∨ P ⊢ P
\n" );
document.write( "(2) P ⊢ (P → Q) → Q
\n" );
document.write( "(3) ∼(P & Q), P ⊢ ∼ Q
\n" );
document.write( "(4) P ⊢ (∼(Q → R) → ∼ P) → (∼ R → ∼ Q))(4)
\n" );
document.write( "(5) (P ∨ Q) → R ⊢ (P → R) & (Q → R)(5)
\n" );
document.write( "(6) ⊢ (P ∨ Q) → (Q ∨ P)(6)
\n" );
document.write( "(7) ∼(P & ∼ Q) ⊢ P → Q
\n" );
document.write( "(8) (P ∨ Q) ↔ P ⊢ Q → P
\n" );
document.write( "(9) P ↔ Q, Q ↔ R ⊢ P ↔ R
\n" );
document.write( "(10) ⊢ (P → Q) → (∼ Q → ∼ P) \n" );
document.write( "
Algebra.Com's Answer #849155 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here are the proofs for each argument:\r \n" ); document.write( "\n" ); document.write( "**(1) P ∨ P ⊢ P**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. P ∨ P | Premise | \n" ); document.write( "| 2. P | Idempotent Law |\r \n" ); document.write( "\n" ); document.write( "**(2) P ⊢ (P → Q) → Q**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. P | Premise | \n" ); document.write( "| 2. P → Q | Assumption | \n" ); document.write( "| 3. Q | Modus Ponens (1, 2) | \n" ); document.write( "| 4. (P → Q) → Q | Conditional Proof (2-3) |\r \n" ); document.write( "\n" ); document.write( "**(3) ∼(P & Q), P ⊢ ∼Q**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. ∼(P & Q) | Premise | \n" ); document.write( "| 2. P | Premise | \n" ); document.write( "| 3. ∼P ∨ ∼Q | De Morgan's Law (1) | \n" ); document.write( "| 4. ∼Q | Disjunctive Syllogism (2, 3) |\r \n" ); document.write( "\n" ); document.write( "**(4) P ⊢ (∼(Q → R) → ∼P) → (∼R → ∼Q)**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. P | Premise | \n" ); document.write( "| 2. ∼(Q → R) → ∼P | Assumption | \n" ); document.write( "| 3. ∼P | Modus Ponens (1,2) | \n" ); document.write( "| 4. ∼(Q → R) | Implication Elimination (2,3) | \n" ); document.write( "| 5. ∼(∼Q ∨ R) | Implication Equivalence (4)| \n" ); document.write( "| 6. Q & ∼R | DeMorgan's Law (5) | \n" ); document.write( "| 7. ∼R | Simplification (6) | \n" ); document.write( "| 8. ∼R → ∼Q | Conditional Proof (7) | \n" ); document.write( "| 9. (∼(Q → R) → ∼P) → (∼R → ∼Q) | Conditional Proof (2-8) |\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "**(5) (P ∨ Q) → R ⊢ (P → R) & (Q → R)**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. (P ∨ Q) → R | Premise | \n" ); document.write( "| 2. P | Assumption | \n" ); document.write( "| 3. P ∨ Q | Introduction (2) | \n" ); document.write( "| 4. R | Modus Ponens (1, 3) | \n" ); document.write( "| 5. P → R | Conditional Proof (2-4) | \n" ); document.write( "| 6. Q | Assumption | \n" ); document.write( "| 7. P ∨ Q | Introduction (6) | \n" ); document.write( "| 8. R | Modus Ponens (1, 7) | \n" ); document.write( "| 9. Q → R | Conditional Proof (6-8) | \n" ); document.write( "| 10. (P → R) & (Q → R) | Conjunction (5, 9) |\r \n" ); document.write( "\n" ); document.write( "**(6) ⊢ (P ∨ Q) → (Q ∨ P)**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. P ∨ Q | Assumption | \n" ); document.write( "| 2. P | Sub-assumption | \n" ); document.write( "| 3. Q ∨ P | Introduction (2) | \n" ); document.write( "| 4. Q | Sub-assumption | \n" ); document.write( "| 5. Q ∨ P | Introduction (4) | \n" ); document.write( "| 6. (P ∨ Q) → (Q ∨ P) | Conditional Proof (1-5) |\r \n" ); document.write( "\n" ); document.write( "**(7) ∼(P & ∼Q) ⊢ P → Q**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. ∼(P & ∼Q) | Premise | \n" ); document.write( "| 2. ∼P ∨ ∼∼Q | De Morgan's Law (1) | \n" ); document.write( "| 3. ∼P ∨ Q | Double Negation (2) | \n" ); document.write( "| 4. P → Q | Implication Equivalence (3) |\r \n" ); document.write( "\n" ); document.write( "**(8) (P ∨ Q) ↔ P ⊢ Q → P**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. (P ∨ Q) ↔ P | Premise | \n" ); document.write( "| 2. (P ∨ Q) → P | Biconditional Elimination (1) | \n" ); document.write( "| 3. Q | Assumption | \n" ); document.write( "| 4. P ∨ Q | Introduction (3) | \n" ); document.write( "| 5. P | Modus Ponens (2, 4) | \n" ); document.write( "| 6. Q → P | Conditional Proof (3-5) |\r \n" ); document.write( "\n" ); document.write( "**(9) P ↔ Q, Q ↔ R ⊢ P ↔ R**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. P ↔ Q | Premise | \n" ); document.write( "| 2. Q ↔ R | Premise | \n" ); document.write( "| 3. P → Q | Biconditional Elimination (1) | \n" ); document.write( "| 4. Q → R | Biconditional Elimination (2) | \n" ); document.write( "| 5. P → R | Hypothetical Syllogism (3, 4) | \n" ); document.write( "| 6. R → Q | Biconditional Elimination (2) | \n" ); document.write( "| 7. Q → P | Biconditional Elimination (1) | \n" ); document.write( "| 8. R → P | Hypothetical Syllogism (6, 7) | \n" ); document.write( "| 9. P ↔ R | Biconditional Introduction (5, 8) |\r \n" ); document.write( "\n" ); document.write( "**(10) ⊢ (P → Q) → (∼Q → ∼P)**\r \n" ); document.write( "\n" ); document.write( "| Statement | Reason | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. P → Q | Assumption | \n" ); document.write( "| 2. ∼Q | Assumption | \n" ); document.write( "| 3. ∼P | Modus Tollens (1, 2) | \n" ); document.write( "| 4. ∼Q → ∼P | Conditional Proof (2-3) | \n" ); document.write( "| 5. (P → Q) → (∼Q → ∼P) | Conditional Proof (1-4) | \n" ); document.write( " \n" ); document.write( " |