document.write( "Question 1191303: Complete the formal proof of the following theorem.
\n" );
document.write( "The bisectors of two adjacent supplementary angles form a right angle.\r
\n" );
document.write( "\n" );
document.write( "There is a line and three rays. There are six labeled points and four labeled angles.
\n" );
document.write( "Line A D is horizontal. B is on this line and between A and D.
\n" );
document.write( "Ray B C goes up and to the right.
\n" );
document.write( "Ray B F goes up and to the right. Point F is below and to the right of point C.
\n" );
document.write( "Ray B E goes up and to the left.
\n" );
document.write( "Angle A B E is labeled 1 and is marked with one arc.
\n" );
document.write( "Angle C B E is labeled 2 and is marked with one arc.
\n" );
document.write( "Angle C B F is labeled 3 and is marked with two arcs.
\n" );
document.write( "Angle D B F is labeled 4 and is marked with two arcs.
\n" );
document.write( "Given:
\n" );
document.write( "∠ABC is supplementary to ∠CBD.
\n" );
document.write( "BE bisects ∠ABC.
\n" );
document.write( "BF bisects ∠CBD.
\n" );
document.write( "Prove: ∠EBF is a right angle.
\n" );
document.write( "Statements Reasons
\n" );
document.write( " 1.
\n" );
document.write( "---Select---
\n" );
document.write( " 1. Given
\n" );
document.write( " 2.
\n" );
document.write( "---Select---
\n" );
document.write( " 2. The sum of the measures of supplementary ∠s is 180°.
\n" );
document.write( " 3. m∠ABC = m∠1 + m∠2;
\n" );
document.write( "---Select---
\n" );
document.write( " 3.
\n" );
document.write( "---Select---
\n" );
document.write( " 4.
\n" );
document.write( "---Select---
\n" );
document.write( " 4. Substitution
\n" );
document.write( " 5.
\n" );
document.write( "BE bisects ∠ABC;
\n" );
document.write( "
\n" );
document.write( "BF bisects ∠CBD.
\n" );
document.write( " 5.
\n" );
document.write( "---Select---
\n" );
document.write( " 6.
\n" );
document.write( "---Select---
\n" );
document.write( " 6. If a ray bisects an ∠, then two ∠s of = measure are formed.
\n" );
document.write( " 7. m∠2 + m∠2 + m∠3 + m∠3 = 180° 7.
\n" );
document.write( "---Select---
\n" );
document.write( " 8.
\n" );
document.write( "2 · m∠2 + 2 · m∠3 = 180°
\n" );
document.write( " 8. Combine like terms.
\n" );
document.write( " 9. m∠2 + m∠3 = 90° 9.
\n" );
document.write( "---Select---
\n" );
document.write( "10.
\n" );
document.write( "---Select---
\n" );
document.write( "10. Angle-Addition Postulate
\n" );
document.write( "11.
\n" );
document.write( "---Select---
\n" );
document.write( "11. Substitution
\n" );
document.write( "12.
\n" );
document.write( "---Select---
\n" );
document.write( "12.
\n" );
document.write( "---Select---
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #849150 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Here's the completed two-column proof:\r \n" ); document.write( "\n" ); document.write( "**Given:**\r \n" ); document.write( "\n" ); document.write( "∠ABC is supplementary to ∠CBD.\r \n" ); document.write( "\n" ); document.write( "BE bisects ∠ABC.\r \n" ); document.write( "\n" ); document.write( "BF bisects ∠CBD.\r \n" ); document.write( "\n" ); document.write( "**Prove:**\r \n" ); document.write( "\n" ); document.write( "∠EBF is a right angle.\r \n" ); document.write( "\n" ); document.write( "| Statements | Reasons | \n" ); document.write( "|---|---| \n" ); document.write( "| 1. ∠ABC is supplementary to ∠CBD. | 1. Given | \n" ); document.write( "| 2. m∠ABC + m∠CBD = 180° | 2. The sum of the measures of supplementary ∠s is 180°. | \n" ); document.write( "| 3. m∠ABC = m∠1 + m∠2; m∠CBD = m∠3 + m∠4 | 3. Angle-Addition Postulate | \n" ); document.write( "| 4. m∠1 + m∠2 + m∠3 + m∠4 = 180° | 4. Substitution | \n" ); document.write( "| 5. BE bisects ∠ABC; BF bisects ∠CBD. | 5. Given | \n" ); document.write( "| 6. m∠1 = m∠2; m∠3 = m∠4 | 6. If a ray bisects an ∠, then two ∠s of = measure are formed. | \n" ); document.write( "| 7. m∠2 + m∠2 + m∠3 + m∠3 = 180° | 7. Substitution | \n" ); document.write( "| 8. 2 · m∠2 + 2 · m∠3 = 180° | 8. Combine like terms. | \n" ); document.write( "| 9. m∠2 + m∠3 = 90° | 9. Division Property of Equality | \n" ); document.write( "| 10. m∠EBF = m∠2 + m∠3 | 10. Angle-Addition Postulate | \n" ); document.write( "| 11. m∠EBF = 90° | 11. Substitution | \n" ); document.write( "| 12. ∠EBF is a right angle. | 12. Definition of a right angle | \n" ); document.write( " \n" ); document.write( " |