document.write( "Question 1209502: Let be three positive numbers such that:\r
\n" ); document.write( "\n" ); document.write( "x^2 + y^2 + z^2 = 2(xy + xz + yz).\r
\n" ); document.write( "\n" ); document.write( "x + y + z + \frac{1}{xyz} > 4.\r
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #849024 by ikleyn(52781)\"\" \"About 
You can put this solution on YOUR website!
.
\n" ); document.write( "Let x, y, z be three positive numbers such that:\r
\n" ); document.write( "\n" ); document.write( "x^2 + y^2 + z^2 = 2(xy + xz + yz).\r
\n" ); document.write( "\n" ); document.write( "Prove that x + y + z + 1/(xyz) > 4.
\n" ); document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "                The solution in the post by  @CPhill is   \"highlight%28highlight%28INCORRECT%29%29\".\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        Indeed,  he rearranges the given equation   x^2 + y^2 + z^2 = 2(xy + xz + yz)\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        to equation   x^2 + y^2 + z^2 - 2xy - 2xz - 2yz = 0,   which is right.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        But then he  \" factors \"  the left-hand side \r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "                (x-y)^2 + (y-z)^2 + (z-x)^2 = 0,\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        which is  FATALLY  WRONG.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "        Hence,  everything what  @CPhill derives further from the  \" factored \"  form is incorrect \r
\n" ); document.write( "\n" ); document.write( "        and does not have the power of logical deducing.\r
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "                 +-----------------------------------------------------------------+
\n" ); document.write( "                     Nevertheless, the statement of the problem is correct,
\n" ); document.write( "                                 and below I developed another solution.
\n" ); document.write( "                 +-----------------------------------------------------------------+\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\r\n" );
document.write( "We start from equation\r\n" );
document.write( "\r\n" );
document.write( "    x^2 + y^2 + z^2 = 2xy + 2xz + 2yz,    (1)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "which is given.   Add 2xy + 2xz + 2yz to both side.  You will get\r\n" );
document.write( "\r\n" );
document.write( "    x^2 + y^ + z^2 + 2xy + 2xz + 2yz = 4xy + 4xz + 4 yz.    (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Left side of the last equation is  (x+y+z)^2,  so it can be re-written in the form\r\n" );
document.write( "\r\n" );
document.write( "    (x + y + z)^2 = 4(xy + xz + yz).    (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now apply AM-GM (Arithmetic mean - Geometric mean) inequality, which says\r\n" );
document.write( "\r\n" );
document.write( "    \"%28a+%2B+b+%2B+c%29%2F3\" >= \"root%283%2Cabc%29\"    (4)\r\n" );
document.write( "\r\n" );
document.write( "for any three positive numbers a, b, c.\r\n" );
document.write( "\r\n" );
document.write( "Therefore, for the right side of equation (3) we have this inequality\r\n" );
document.write( "\r\n" );
document.write( "    4(xy + xz + yz) = \"%284%2A3%29%2A%28%28xy%2Bxz%2Byz%29%2F3%29\" >= \"12%2Aroot%283%2Cx%5E2%2Ay%5E2%2Az%5E2%29\" = \"12%2Aroot%283%2C%28x%2Ay%2Az%29%5E2%29\".    (5)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, combining (3) and (5), we get\r\n" );
document.write( "\r\n" );
document.write( "    (x + y + z)^2 >= \"12%2Aroot%283%2C%28xyz%29%5E2%29\".    (6)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now take square root of both sides of (6) and get\r\n" );
document.write( "\r\n" );
document.write( "    x + y + z >= \"2%2Asqrt%283%29%2Aroot%283%2Cxyz%29\".     (7)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Now, to prove the inequality as it is given in the condition, add \"1%2F%28xyz%29\" to both sides of (7).\r\n" );
document.write( "You will get\r\n" );
document.write( "\r\n" );
document.write( "    x + y + z + \"1%2F%28xyz%29\" >= \"2%2Asqrt%283%29%2Aroot%283%2Cxyz%29\" + \"1%2F%28xyz%29\".    (8)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Consider function  \"2%2Asqrt%283%29%2At\" + \"1%2Ft%5E3\".\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "This function is easy to analyze for its minimum.\r\n" );
document.write( "\r\n" );
document.write( "Such an analysis can be done using standard Calculus procedure or graphically.\r\n" );
document.write( "\r\n" );
document.write( "The plot of this function is shown in Figure under this link\r\n" );
document.write( "\r\n" );
document.write( "https://www.desmos.com/calculator/zw8xlstrvb\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "The minimum is  4.45566.  For us, it gives the information that right side of (8) is always greater than 4.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, the inequality\r\n" );
document.write( "\r\n" );
document.write( "    x + y + z + \"1%2F%28xyz%29\" > 4\r\n" );
document.write( "\r\n" );
document.write( "is proved.\r\n" );
document.write( "
\r
\n" ); document.write( "\n" ); document.write( "At this point, the solution to the problem is complete.\r
\n" ); document.write( "
\n" ); document.write( "
\n" ); document.write( "\n" ); document.write( "
\n" ); document.write( "
\n" );