document.write( "Question 1209502: Let be three positive numbers such that:\r
\n" );
document.write( "\n" );
document.write( "x^2 + y^2 + z^2 = 2(xy + xz + yz).\r
\n" );
document.write( "\n" );
document.write( "x + y + z + \frac{1}{xyz} > 4.\r
\n" );
document.write( "\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #848934 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! Certainly, let's prove the given inequality.\r \n" ); document.write( "\n" ); document.write( "**1. Utilize the Given Condition**\r \n" ); document.write( "\n" ); document.write( "* We are given: x² + y² + z² = 2(xy + xz + yz) \r \n" ); document.write( "\n" ); document.write( "* Rearrange the equation: \n" ); document.write( " x² + y² + z² - 2xy - 2xz - 2yz = 0\r \n" ); document.write( "\n" ); document.write( "* Factor the left-hand side: \n" ); document.write( " (x - y)² + (y - z)² + (z - x)² = 0\r \n" ); document.write( "\n" ); document.write( "* Since the squares of real numbers are always non-negative, the only way for the sum of three squares to be zero is if each individual square is zero. \r \n" ); document.write( "\n" ); document.write( "* Therefore: \n" ); document.write( " x - y = 0 \n" ); document.write( " y - z = 0 \n" ); document.write( " z - x = 0\r \n" ); document.write( "\n" ); document.write( "* This implies that: \n" ); document.write( " x = y = z\r \n" ); document.write( "\n" ); document.write( "**2. Substitute and Simplify**\r \n" ); document.write( "\n" ); document.write( "* Let x = y = z = k (where k is a positive number)\r \n" ); document.write( "\n" ); document.write( "* The inequality to prove becomes: \n" ); document.write( " k + k + k + 1/(k * k * k) > 4\r \n" ); document.write( "\n" ); document.write( " 3k + 1/k³ > 4\r \n" ); document.write( "\n" ); document.write( "**3. Prove the Inequality**\r \n" ); document.write( "\n" ); document.write( "* **Method 1: AM-GM Inequality**\r \n" ); document.write( "\n" ); document.write( " * Apply the AM-GM inequality to the numbers 3k and 1/k³: \n" ); document.write( " (3k + 1/k³) / 2 ≥ √(3k * 1/k³) \n" ); document.write( " (3k + 1/k³) / 2 ≥ √3 \n" ); document.write( " 3k + 1/k³ ≥ 2√3\r \n" ); document.write( "\n" ); document.write( " * Since 2√3 > 4, we have: \n" ); document.write( " 3k + 1/k³ > 4 \r \n" ); document.write( "\n" ); document.write( "* **Method 2: Algebraic Manipulation**\r \n" ); document.write( "\n" ); document.write( " * Multiply both sides of the inequality by k³ (since k is positive, this does not change the direction of the inequality): \n" ); document.write( " 3k⁴ + 1 > 4k³\r \n" ); document.write( "\n" ); document.write( " * Rearrange: \n" ); document.write( " 3k⁴ - 4k³ + 1 > 0\r \n" ); document.write( "\n" ); document.write( " * Factor: \n" ); document.write( " (k - 1)³ (3k + 1) > 0\r \n" ); document.write( "\n" ); document.write( " * Since k is positive, (3k + 1) is always positive. \r \n" ); document.write( "\n" ); document.write( " * Therefore, for the inequality to hold, (k - 1)³ must be positive. This implies k > 1.\r \n" ); document.write( "\n" ); document.write( " * Since x = y = z = k, we have x > 1, y > 1, and z > 1. \r \n" ); document.write( "\n" ); document.write( " * Now, consider the expression: \n" ); document.write( " x + y + z + 1/(xyz) \r \n" ); document.write( "\n" ); document.write( " * Since x, y, and z are all greater than 1, 1/(xyz) will be less than 1.\r \n" ); document.write( "\n" ); document.write( " * Therefore, x + y + z + 1/(xyz) > x + y + z > 3 > 4\r \n" ); document.write( "\n" ); document.write( "**Conclusion**\r \n" ); document.write( "\n" ); document.write( "We have proven that if x², y², and z² satisfy the given condition, then x + y + z + 1/(xyz) > 4. \n" ); document.write( " \n" ); document.write( " |