Algebra.Com's Answer #848890 by ikleyn(52803)  You can put this solution on YOUR website! . \n" );
document.write( "Evaluate sqrt(y/x) where x and y are positive integers, and 0=x^5-(x^3y^3)-12393. \n" );
document.write( "~~~~~~~~~~~~~~~~~~~~~~~~~~\r \n" );
document.write( " \n" );
document.write( "\n" );
document.write( "\r\n" );
document.write( "Your starting equation is\r\n" );
document.write( "\r\n" );
document.write( " x^5 - x^3*y^3 = 12393, (1)\r\n" );
document.write( "\r\n" );
document.write( "or\r\n" );
document.write( "\r\n" );
document.write( " x^3*(x^2 - y^3) = 12393. (2)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Integer number 12393 has the primary decomposition 12393 = , \r\n" );
document.write( "so the last equation is\r\n" );
document.write( "\r\n" );
document.write( " x^3*(x^2 - y^3) = . (3)\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "From it, it is clear that for x, y to be integer solutions to this equation, it is necessary that x be 1, or 3, or 3^2 = 9.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "So, we should consider these three cases.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(a) x = 1. Then from equation (3)\r\n" );
document.write( "\r\n" );
document.write( " x^2 - y^3 = 3^6*17 = 12393, y^3 = 1 - 12393 = -12392.\r\n" );
document.write( "\r\n" );
document.write( " But this number is not a positive perfect cube, so this way does not work.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(b) x = 3. Then from equation (3)\r\n" );
document.write( "\r\n" );
document.write( " x^2 - y^3 = 3^3*17 = 459, y^3 = 9 - 459 = -450. \r\n" );
document.write( "\r\n" );
document.write( " But this number is not a positive perfect cube, so this way does not work.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "(c) x = 3^2 = 9. Then from equation (3)\r\n" );
document.write( "\r\n" );
document.write( " x^2 - y^3 = 17, y^3 = 81 - 17 = 64. \r\n" );
document.write( "\r\n" );
document.write( " This number, 64, is a positive perfect cube, so y = 4.\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Thus, the solution to the given equation in this pair of positive integer numbers (x,y) = (3,4).\r\n" );
document.write( "\r\n" );
document.write( "\r\n" );
document.write( "Then is this irrational number = = 1.154700538 (rounded). ANSWER\r\n" );
document.write( " \r \n" );
document.write( "\n" );
document.write( "Solved.\r \n" );
document.write( " \n" );
document.write( " \n" );
document.write( "\n" );
document.write( " \n" );
document.write( " |