document.write( "Question 1209461: The line y= mx + c is tangent to the curve x^2 + y^2 = 4. Prove that 4m^2 = c^2 - 4 \n" ); document.write( "
Algebra.Com's Answer #848883 by math_tutor2020(3817)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "x^2 + y^2 = 4 \n" ); document.write( "x^2 + (mx+c)^2 = 4 ................. plug in y = mx+c \n" ); document.write( "x^2 + m^2x^2+2mcx+c^2 = 4 \n" ); document.write( "(1+m^2)x^2 + 2mcx + c^2-4 = 0\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "We have the quadratic function \n" ); document.write( "f(x) = (1+m^2)x^2 + 2mcx + (c^2-4) \n" ); document.write( "where,
\n" ); document.write( "This generates exactly one point of intersection between the circle and the tangent line.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "d = discriminant \n" ); document.write( "d = (x coefficient)^2 - 4*(x^2 coefficient)*(constant) \n" ); document.write( "d = (2mc)^2 - 4*(1+m^2)(c^2-4) \n" ); document.write( "(2mc)^2 - 4*(1+m^2)(c^2-4) = 0 \n" ); document.write( "4m^2c^2 - 4*(1+m^2)(c^2-4) = 0 \n" ); document.write( "4( m^2c^2 - (1+m^2)(c^2-4) ) = 0 \n" ); document.write( "m^2c^2 - (1+m^2)(c^2-4) = 0/4 \n" ); document.write( "m^2c^2 - (c^2-4) - m^2(c^2-4) = 0 \n" ); document.write( "m^2c^2 - (c^2-4) - m^2c^2+4m^2 = 0 \n" ); document.write( "-(c^2-4)+4m^2 = 0 \n" ); document.write( "4m^2 = c^2-4 \n" ); document.write( " \n" ); document.write( " |