document.write( "Question 1193223: At a restaurant, the time a customer has to wait before being seated follows an exponential distribution and is given by the probability density function (pdf):\r
\n" ); document.write( "\n" ); document.write( "f(t)=1e−1t
\n" ); document.write( "
\n" ); document.write( "Find the probability that a customer will have to wait at least 4 minutes for a table.
\n" ); document.write( "

Algebra.Com's Answer #848850 by CPhill(1987)\"\" \"About 
You can put this solution on YOUR website!
**1. Identify the Distribution**\r
\n" ); document.write( "\n" ); document.write( "* The given probability density function (PDF)
\n" ); document.write( " f(t) = 1/e * e^(-t)
\n" ); document.write( " represents an **exponential distribution** with a rate parameter (λ) of 1.\r
\n" ); document.write( "\n" ); document.write( "**2. Find the Probability of Waiting at Least 4 Minutes**\r
\n" ); document.write( "\n" ); document.write( "* We need to find P(T ≥ 4), where T is the waiting time.\r
\n" ); document.write( "\n" ); document.write( "* **For an exponential distribution, the cumulative distribution function (CDF) is given by:**\r
\n" ); document.write( "\n" ); document.write( " F(t) = 1 - e^(-λt) \r
\n" ); document.write( "\n" ); document.write( "* **To find P(T ≥ 4), we can use the complementary probability:**\r
\n" ); document.write( "\n" ); document.write( " P(T ≥ 4) = 1 - P(T < 4)
\n" ); document.write( " P(T ≥ 4) = 1 - F(4) \r
\n" ); document.write( "\n" ); document.write( "* **Calculate F(4):**\r
\n" ); document.write( "\n" ); document.write( " F(4) = 1 - e^(-1 * 4)
\n" ); document.write( " F(4) = 1 - e^(-4)
\n" ); document.write( " F(4) ≈ 1 - 0.0183
\n" ); document.write( " F(4) ≈ 0.9817\r
\n" ); document.write( "\n" ); document.write( "* **Calculate P(T ≥ 4):**\r
\n" ); document.write( "\n" ); document.write( " P(T ≥ 4) = 1 - F(4)
\n" ); document.write( " P(T ≥ 4) = 1 - 0.9817
\n" ); document.write( " P(T ≥ 4) ≈ 0.0183\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the probability that a customer will have to wait at least 4 minutes for a table is approximately 0.0183 (or 1.83%).**
\n" ); document.write( "
\n" ); document.write( "
\n" );