document.write( "Question 1193306: A brisk walk at a 6 km per hour, burns an average of 300 calories per hour. If the standard deviation of the distribution is 8 calories, find the probability that a person who walks an hour at the rate of 6 kilometers per hour will burn the following calories.
\n" ); document.write( "A.Less than 294 calories \r
\n" ); document.write( "\n" ); document.write( "B.Between 278 and 318 calories
\n" ); document.write( "

Algebra.Com's Answer #848848 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
**1. Define Variables**\r
\n" ); document.write( "\n" ); document.write( "* Let X be the random variable representing the number of calories burned per hour.
\n" ); document.write( "* X follows a normal distribution with:
\n" ); document.write( " * Mean (μ) = 300 calories
\n" ); document.write( " * Standard deviation (σ) = 8 calories\r
\n" ); document.write( "\n" ); document.write( "**2. Standardize the Values**\r
\n" ); document.write( "\n" ); document.write( "* We'll use the z-score formula:
\n" ); document.write( " * z = (X - μ) / σ\r
\n" ); document.write( "\n" ); document.write( "**A. Less than 294 calories**\r
\n" ); document.write( "\n" ); document.write( "* Calculate the z-score for X = 294:
\n" ); document.write( " * z = (294 - 300) / 8 = -0.75\r
\n" ); document.write( "\n" ); document.write( "* Find the probability:
\n" ); document.write( " * P(X < 294) = P(Z < -0.75)
\n" ); document.write( " * Using a standard normal distribution table or a calculator, we find P(Z < -0.75) ≈ 0.2266\r
\n" ); document.write( "\n" ); document.write( "* **Therefore, the probability of burning less than 294 calories is approximately 0.2266 (or 22.66%).**\r
\n" ); document.write( "\n" ); document.write( "**B. Between 278 and 318 calories**\r
\n" ); document.write( "\n" ); document.write( "* Calculate the z-scores for X = 278 and X = 318:
\n" ); document.write( " * z1 = (278 - 300) / 8 = -2.75
\n" ); document.write( " * z2 = (318 - 300) / 8 = 2.25\r
\n" ); document.write( "\n" ); document.write( "* Find the probability:
\n" ); document.write( " * P(278 < X < 318) = P(-2.75 < Z < 2.25)
\n" ); document.write( " * P(-2.75 < Z < 2.25) = P(Z < 2.25) - P(Z < -2.75)\r
\n" ); document.write( "\n" ); document.write( " * Using a standard normal distribution table or a calculator:
\n" ); document.write( " * P(Z < 2.25) ≈ 0.9878
\n" ); document.write( " * P(Z < -2.75) ≈ 0.0030\r
\n" ); document.write( "\n" ); document.write( " * P(-2.75 < Z < 2.25) ≈ 0.9878 - 0.0030 = 0.9848\r
\n" ); document.write( "\n" ); document.write( "* **Therefore, the probability of burning between 278 and 318 calories is approximately 0.9848 (or 98.48%).**
\n" ); document.write( "
\n" ); document.write( "
\n" );