document.write( "Question 1193306: A brisk walk at a 6 km per hour, burns an average of 300 calories per hour. If the standard deviation of the distribution is 8 calories, find the probability that a person who walks an hour at the rate of 6 kilometers per hour will burn the following calories.
\n" );
document.write( "A.Less than 294 calories \r
\n" );
document.write( "\n" );
document.write( "B.Between 278 and 318 calories \n" );
document.write( "
Algebra.Com's Answer #848848 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! **1. Define Variables**\r \n" ); document.write( "\n" ); document.write( "* Let X be the random variable representing the number of calories burned per hour. \n" ); document.write( "* X follows a normal distribution with: \n" ); document.write( " * Mean (μ) = 300 calories \n" ); document.write( " * Standard deviation (σ) = 8 calories\r \n" ); document.write( "\n" ); document.write( "**2. Standardize the Values**\r \n" ); document.write( "\n" ); document.write( "* We'll use the z-score formula: \n" ); document.write( " * z = (X - μ) / σ\r \n" ); document.write( "\n" ); document.write( "**A. Less than 294 calories**\r \n" ); document.write( "\n" ); document.write( "* Calculate the z-score for X = 294: \n" ); document.write( " * z = (294 - 300) / 8 = -0.75\r \n" ); document.write( "\n" ); document.write( "* Find the probability: \n" ); document.write( " * P(X < 294) = P(Z < -0.75) \n" ); document.write( " * Using a standard normal distribution table or a calculator, we find P(Z < -0.75) ≈ 0.2266\r \n" ); document.write( "\n" ); document.write( "* **Therefore, the probability of burning less than 294 calories is approximately 0.2266 (or 22.66%).**\r \n" ); document.write( "\n" ); document.write( "**B. Between 278 and 318 calories**\r \n" ); document.write( "\n" ); document.write( "* Calculate the z-scores for X = 278 and X = 318: \n" ); document.write( " * z1 = (278 - 300) / 8 = -2.75 \n" ); document.write( " * z2 = (318 - 300) / 8 = 2.25\r \n" ); document.write( "\n" ); document.write( "* Find the probability: \n" ); document.write( " * P(278 < X < 318) = P(-2.75 < Z < 2.25) \n" ); document.write( " * P(-2.75 < Z < 2.25) = P(Z < 2.25) - P(Z < -2.75)\r \n" ); document.write( "\n" ); document.write( " * Using a standard normal distribution table or a calculator: \n" ); document.write( " * P(Z < 2.25) ≈ 0.9878 \n" ); document.write( " * P(Z < -2.75) ≈ 0.0030\r \n" ); document.write( "\n" ); document.write( " * P(-2.75 < Z < 2.25) ≈ 0.9878 - 0.0030 = 0.9848\r \n" ); document.write( "\n" ); document.write( "* **Therefore, the probability of burning between 278 and 318 calories is approximately 0.9848 (or 98.48%).** \n" ); document.write( " \n" ); document.write( " |