document.write( "Question 1209422: The parametric equations
\n" );
document.write( "x = vt \cos \theta,
\n" );
document.write( "y = vt \sin \theta - \frac{1}{2} gt^2,
\n" );
document.write( "describe the path of a projectile fired at an angle of theta, where v is the initial velocity, g denotes acceleration due to gravity, and t denotes time.\r
\n" );
document.write( "
\n" );
document.write( "\n" );
document.write( "The path itself is a parabolic arch, and the distance the projectile reaches varies with the angle theta. Find the maximum distance. \n" );
document.write( "
Algebra.Com's Answer #848804 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! **1. Find the time of flight:**\r \n" ); document.write( "\n" ); document.write( "* The projectile hits the ground when y = 0. \n" ); document.write( "* Set the y equation to zero: \n" ); document.write( " vt * sin(theta) - (1/2) * g * t^2 = 0 \n" ); document.write( "* Solve for t: \n" ); document.write( " t(vt * sin(theta) - (1/2) * g * t) = 0 \n" ); document.write( " t = 0 (initial point) or t = (2 * v * sin(theta)) / g \r \n" ); document.write( "\n" ); document.write( "**2. Find the horizontal distance (range):**\r \n" ); document.write( "\n" ); document.write( "* Substitute the time of flight (t = (2 * v * sin(theta)) / g) into the x equation: \n" ); document.write( " x = v * cos(theta) * (2 * v * sin(theta)) / g \n" ); document.write( " x = (v^2 * 2 * sin(theta) * cos(theta)) / g\r \n" ); document.write( "\n" ); document.write( "**3. Use the trigonometric identity:**\r \n" ); document.write( "\n" ); document.write( "* Recall the double-angle formula for sine: \n" ); document.write( " sin(2 * theta) = 2 * sin(theta) * cos(theta)\r \n" ); document.write( "\n" ); document.write( "* Substitute into the range equation: \n" ); document.write( " x = (v^2 * sin(2 * theta)) / g\r \n" ); document.write( "\n" ); document.write( "**4. Find the maximum distance:**\r \n" ); document.write( "\n" ); document.write( "* The maximum distance occurs when sin(2 * theta) is at its maximum value, which is 1. \n" ); document.write( "* This happens when 2 * theta = 90 degrees, or theta = 45 degrees.\r \n" ); document.write( "\n" ); document.write( "**5. Calculate the maximum distance:**\r \n" ); document.write( "\n" ); document.write( "* Substitute theta = 45 degrees into the range equation: \n" ); document.write( " x_max = (v^2 * sin(90)) / g \n" ); document.write( " x_max = (v^2) / g\r \n" ); document.write( "\n" ); document.write( "**Therefore, the maximum distance (range) of the projectile is achieved when the launch angle is 45 degrees, and the maximum distance is (v^2) / g.** \n" ); document.write( " \n" ); document.write( " |