document.write( "Question 1209398: Let a and b be complex numbers. If a + b = 4 and a^2 + b^2 = 6 + ab, then what is a^3 + b^3? \n" ); document.write( "
Algebra.Com's Answer #848751 by math_tutor2020(3816)![]() ![]() ![]() You can put this solution on YOUR website! \n" ); document.write( "Answer: 24\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Explanation \n" ); document.write( "I'll show 3 methods to solving this problem. \n" ); document.write( "There could be other pathways.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Method 1\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "The given equations are \n" ); document.write( "a+b = 4 \n" ); document.write( "a^2+b^2 = 6+ab \n" ); document.write( "Let's refer to these as equations (1) and (2) in the order presented.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a^3+b^3 = (a+b)*(a^2-ab+b^2) ...... sum of cubes factoring formula \n" ); document.write( "a^3+b^3 = (a+b)*(a^2+b^2-ab) \n" ); document.write( "a^3+b^3 = (a+b)*(6+ab-ab) ....... substitute in equation (2) \n" ); document.write( "a^3+b^3 = (a+b)*(6) \n" ); document.write( "a^3+b^3 = (4)*(6) ...... substitute in equation (1) \n" ); document.write( "a^3+b^3 = 24\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Method 2\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Square both sides of equation (1) \n" ); document.write( "a+b = 4 \n" ); document.write( "(a+b)^2 = 4^2 \n" ); document.write( "a^2+2ab+b^2 = 16 \n" ); document.write( "(a^2+b^2)+2ab = 16 \n" ); document.write( "(6+ab)+2ab = 16 ..... substitute in equation (2) \n" ); document.write( "6+3ab = 16 \n" ); document.write( "3ab = 16-6 \n" ); document.write( "3ab = 10 \n" ); document.write( "Let's call this equation (3)\r \n" ); document.write( " \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Now cube both sides of equation (1) \n" ); document.write( "a+b = 4 \n" ); document.write( "(a+b)^3 = 4^3 \n" ); document.write( "a^3 + 3a^2b + 3ab^2 + b^3 = 64 ... use binomial expansion formula \n" ); document.write( "a^3 + b^3 + 3a^2b + 3ab^2 = 64 \n" ); document.write( "a^3 + b^3 + 3ab(a+b) = 64 \n" ); document.write( "a^3 + b^3 + 10*(4) = 64 .... substitute in equations (1) and (3) \n" ); document.write( "a^3 + b^3 + 40 = 64 \n" ); document.write( "a^3 + b^3 = 64-40 \n" ); document.write( "a^3 + b^3 = 24 is the final answer.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "--------------------------------------------------------------------------\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Method 3\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "a+b = 4 rearranges into a = 4-b \n" ); document.write( "Substitute that into a^2 + b^2 = 6 + ab and you'll get (4-b)^2 + b^2 = 6 + (4-b)*b \n" ); document.write( "Expand everything out and get everything to one side. \n" ); document.write( "You should arrive at 3b^2-12b+10 = 0 \n" ); document.write( "I'll skip steps and only provide the key milestones. \r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Use of the quadratic formula yields the roots \n" ); document.write( "If b is one of those roots then a = 4-b is the other root. \n" ); document.write( "The order doesn't matter.\r \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "So you would get \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Cubing both of those produces \n" ); document.write( "The sum of which is \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "Note the \n" ); document.write( " \n" ); document.write( "\n" ); document.write( "A somewhat similar question is found here \n" ); document.write( " \n" ); document.write( " |