document.write( "Question 1209355: Find x if \log_2 (\log_3 x) = \log_4 x. \n" ); document.write( "
Algebra.Com's Answer #848630 by yurtman(42)![]() ![]() ![]() You can put this solution on YOUR website! **1. Change Bases**\r \n" ); document.write( "\n" ); document.write( "* **Use the change-of-base formula:** \n" ); document.write( " * loga(b) = logc(b) / logc(a) \r \n" ); document.write( "\n" ); document.write( "* Apply this to both sides of the equation: \n" ); document.write( " * log2(log3(x)) = log4(x) \n" ); document.write( " * log2(log3(x)) = log2(x) / log2(4) \n" ); document.write( " * log2(log3(x)) = log2(x) / 2 \r \n" ); document.write( "\n" ); document.write( "**2. Simplify**\r \n" ); document.write( "\n" ); document.write( "* Multiply both sides by 2: \n" ); document.write( " * 2 * log2(log3(x)) = log2(x)\r \n" ); document.write( "\n" ); document.write( "* Apply the power rule of logarithms: \n" ); document.write( " * log2((log3(x))²) = log2(x)\r \n" ); document.write( "\n" ); document.write( "**3. Equate Arguments**\r \n" ); document.write( "\n" ); document.write( "* Since the bases of the logarithms are the same (base 2), we can equate the arguments: \n" ); document.write( " * (log3(x))² = x\r \n" ); document.write( "\n" ); document.write( "**4. Solve for x**\r \n" ); document.write( "\n" ); document.write( "* This equation is difficult to solve algebraically. \n" ); document.write( "* **Use numerical methods (like graphing or using a solver function on a calculator) to find the solutions.** \r \n" ); document.write( "\n" ); document.write( "* **Solutions:** \n" ); document.write( " * x ≈ 1 \n" ); document.write( " * x ≈ 8.51\r \n" ); document.write( "\n" ); document.write( "**Therefore, the possible values of x that satisfy the equation log2(log3(x)) = log4(x) are approximately 1 and 8.51.** \n" ); document.write( " \n" ); document.write( " |