document.write( "Question 1209355: Find x if \log_2 (\log_3 x) = \log_4 x. \n" ); document.write( "
Algebra.Com's Answer #848630 by yurtman(42)\"\" \"About 
You can put this solution on YOUR website!
**1. Change Bases**\r
\n" ); document.write( "\n" ); document.write( "* **Use the change-of-base formula:**
\n" ); document.write( " * loga(b) = logc(b) / logc(a) \r
\n" ); document.write( "\n" ); document.write( "* Apply this to both sides of the equation:
\n" ); document.write( " * log2(log3(x)) = log4(x)
\n" ); document.write( " * log2(log3(x)) = log2(x) / log2(4)
\n" ); document.write( " * log2(log3(x)) = log2(x) / 2 \r
\n" ); document.write( "\n" ); document.write( "**2. Simplify**\r
\n" ); document.write( "\n" ); document.write( "* Multiply both sides by 2:
\n" ); document.write( " * 2 * log2(log3(x)) = log2(x)\r
\n" ); document.write( "\n" ); document.write( "* Apply the power rule of logarithms:
\n" ); document.write( " * log2((log3(x))²) = log2(x)\r
\n" ); document.write( "\n" ); document.write( "**3. Equate Arguments**\r
\n" ); document.write( "\n" ); document.write( "* Since the bases of the logarithms are the same (base 2), we can equate the arguments:
\n" ); document.write( " * (log3(x))² = x\r
\n" ); document.write( "\n" ); document.write( "**4. Solve for x**\r
\n" ); document.write( "\n" ); document.write( "* This equation is difficult to solve algebraically.
\n" ); document.write( "* **Use numerical methods (like graphing or using a solver function on a calculator) to find the solutions.** \r
\n" ); document.write( "\n" ); document.write( "* **Solutions:**
\n" ); document.write( " * x ≈ 1
\n" ); document.write( " * x ≈ 8.51\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the possible values of x that satisfy the equation log2(log3(x)) = log4(x) are approximately 1 and 8.51.**
\n" ); document.write( "
\n" ); document.write( "
\n" );