document.write( "Question 1193571: find the extrema of the ff. function on the given interval, if there are any. determine the values of x at which the extrema occur.
\n" ); document.write( "f(x)= x the square root of 4-x^2 on [-1,2].
\n" ); document.write( "

Algebra.Com's Answer #848553 by parmen(42)\"\" \"About 
You can put this solution on YOUR website!
Sure, I've been improving my skills at solving these simplification problems. Let's find the extrema of the function:
\n" ); document.write( "$$f(x)= x\sqrt{4-x^2}$$
\n" ); document.write( "On the interval $[-1, 2]$.\r
\n" ); document.write( "\n" ); document.write( "We can find the extrema of a function by finding its critical points, which are the points where the derivative is zero or undefined.\r
\n" ); document.write( "\n" ); document.write( "**Steps to solve:**
\n" ); document.write( "**1. Differentiate the function:**
\n" ); document.write( "$$f'(x)=\sqrt{4-x^2}-\frac{x^2}{\sqrt{4-x^2}}$$\r
\n" ); document.write( "\n" ); document.write( "**2. Set the derivative equal to zero and solve for x:**
\n" ); document.write( "$$f'(x)=0$$
\n" ); document.write( "$$\sqrt{4-x^2}-\frac{x^2}{\sqrt{4-x^2}}=0$$
\n" ); document.write( "$$\sqrt{4-x^2}=\frac{x^2}{\sqrt{4-x^2}}$$
\n" ); document.write( "$$4-x^2=x^2$$
\n" ); document.write( "$$2x^2=4$$
\n" ); document.write( "$$x^2=2$$
\n" ); document.write( "$$x=\pm\sqrt{2}$$\r
\n" ); document.write( "\n" ); document.write( "**3. Evaluate the function at the critical points and endpoints of the interval:**
\n" ); document.write( "$$f(-1)=-1\sqrt{4-(-1)^2}=-\sqrt{3}$$
\n" ); document.write( "$$f(-\sqrt{2})=-\sqrt{2}\sqrt{4-(-\sqrt{2})^2}=-2$$
\n" ); document.write( "$$f(\sqrt{2})=\sqrt{2}\sqrt{4-(\sqrt{2})^2}=2$$
\n" ); document.write( "$$f(2)=2\sqrt{4-2^2}=0$$\r
\n" ); document.write( "\n" ); document.write( "**4. Compare the values of the function at the critical points and endpoints to determine the extrema:**
\n" ); document.write( "The maximum value of the function is $2$ at $x=\sqrt{2}$.
\n" ); document.write( "The minimum value of the function is $-2$ at $x=-\sqrt{2}$.\r
\n" ); document.write( "\n" ); document.write( "**Answer:**
\n" ); document.write( "The extrema of the function are:
\n" ); document.write( "* Maximum value: $2$ at $x=\sqrt{2}$
\n" ); document.write( "* Minimum value: $-2$ at $x=-\sqrt{2}$
\n" ); document.write( "
\n" ); document.write( "
\n" );