document.write( "Question 1193654: What is the solution to the integral of (ln^3 x) / (x)(√ln^2 x - 4) dx using trigonometric substitution? The answer should be equal to ((8+ln^2 x)/3)(√ln^2 x - 4). \n" ); document.write( "
Algebra.Com's Answer #848541 by parmen(42)![]() ![]() ![]() You can put this solution on YOUR website! Certainly, let's tackle this integral using trigonometric substitution.\r \n" ); document.write( "\n" ); document.write( "**1. Preparation**\r \n" ); document.write( "\n" ); document.write( "* **Substitution:** \n" ); document.write( " * Let ln(x) = 2sec(θ) \n" ); document.write( " * Then, d(ln(x)) = 2sec(θ)tan(θ) dθ \n" ); document.write( " * Which implies: (1/x) dx = 2sec(θ)tan(θ) dθ\r \n" ); document.write( "\n" ); document.write( "**2. Substitute into the Integral**\r \n" ); document.write( "\n" ); document.write( "* The integral becomes: \n" ); document.write( " ∫ (ln³(x)) / (x)(√(ln²(x) - 4)) dx \n" ); document.write( " = ∫ (2sec(θ))³ * 2sec(θ)tan(θ) / (√(4sec²(θ) - 4)) dθ \n" ); document.write( " = ∫ 16sec⁴(θ)tan(θ) / (2√(sec²(θ) - 1)) dθ \n" ); document.write( " = ∫ 8sec⁴(θ)tan(θ) / tan(θ) dθ \n" ); document.write( " = ∫ 8sec⁴(θ) dθ\r \n" ); document.write( "\n" ); document.write( "**3. Simplify the Integral**\r \n" ); document.write( "\n" ); document.write( "* Use the identity: sec²(θ) = 1 + tan²(θ) \n" ); document.write( " ∫ 8sec⁴(θ) dθ = ∫ 8(1 + tan²(θ))sec²(θ) dθ \n" ); document.write( " = ∫ 8sec²(θ) dθ + ∫ 8tan²(θ)sec²(θ) dθ\r \n" ); document.write( "\n" ); document.write( "**4. Evaluate the Integrals**\r \n" ); document.write( "\n" ); document.write( "* ∫ 8sec²(θ) dθ = 8tan(θ) + C₁ \n" ); document.write( "* ∫ 8tan²(θ)sec²(θ) dθ = 8/3 * tan³(θ) + C₂ \r \n" ); document.write( "\n" ); document.write( "**5. Combine the Results**\r \n" ); document.write( "\n" ); document.write( "* ∫ 8sec⁴(θ) dθ = 8tan(θ) + 8/3 * tan³(θ) + C \r \n" ); document.write( "\n" ); document.write( "**6. Back-Substitute for x**\r \n" ); document.write( "\n" ); document.write( "* Recall: ln(x) = 2sec(θ) \n" ); document.write( " => sec(θ) = ln(x) / 2 \n" ); document.write( " => tan(θ) = √(sec²(θ) - 1) = √((ln²(x) / 4) - 1) = √(ln²(x) - 4) / 2\r \n" ); document.write( "\n" ); document.write( "* Substitute these values back into the result:\r \n" ); document.write( "\n" ); document.write( " ∫ (ln³(x)) / (x)(√(ln²(x) - 4)) dx = 8 * (√(ln²(x) - 4) / 2) + 8/3 * (√(ln²(x) - 4) / 2)³ + C \n" ); document.write( " = 4√(ln²(x) - 4) + (1/3) * √(ln²(x) - 4)³ + C\r \n" ); document.write( "\n" ); document.write( "**Therefore, the solution to the integral is:**\r \n" ); document.write( "\n" ); document.write( "∫ (ln³(x)) / (x)(√(ln²(x) - 4)) dx = 4√(ln²(x) - 4) + (1/3) * √(ln²(x) - 4)³ + C \r \n" ); document.write( "\n" ); document.write( "I hope this comprehensive solution is helpful! \n" ); document.write( " \n" ); document.write( " |