document.write( "Question 1193686:  Find the missing lengths. Give your answers in both simplest radical form and as approximations correct to two decimal places.
\n" );
document.write( "Given:	right △RST with 
\n" );
document.write( "RT = 8radical 2
\n" );
document.write( " and m∠
\n" );
document.write( "STV = 150°
\n" );
document.write( "Find:	RS and ST
\n" );
document.write( "simplest radical form	RS=	
\n" );
document.write( "approximation	RS =	
\n" );
document.write( "simplest radical form ST =	
\n" );
document.write( " approximation ST= \n" );
document.write( "
| Algebra.Com's Answer #848540 by parmen(42)      You can put this solution on YOUR website! Certainly, let's find the missing lengths in the right triangle RST.\r \n" ); document.write( "\n" ); document.write( "**1. Analyze the Given Information**\r \n" ); document.write( "\n" ); document.write( "* We have a right triangle RST, which implies that ∠RTS = 90°. \n" ); document.write( "* RT = 8√2 \n" ); document.write( "* m∠STV = 150° \r \n" ); document.write( "\n" ); document.write( "**2. Determine ∠RST**\r \n" ); document.write( "\n" ); document.write( "* Since ∠STV = 150° and ∠RTS = 90°, \n" ); document.write( "* ∠RST = 180° - ∠STV - ∠RTS = 180° - 150° - 90° = -60° \r \n" ); document.write( "\n" ); document.write( "* However, angles in a triangle cannot be negative. This suggests there might be an error in the given information. \r \n" ); document.write( "\n" ); document.write( "**3. Assuming a Corrected Angle**\r \n" ); document.write( "\n" ); document.write( "Let's assume that m∠STV = 30° instead of 150°. This would make more sense in the context of a right triangle.\r \n" ); document.write( "\n" ); document.write( "* ∠RST = 180° - ∠STV - ∠RTS = 180° - 30° - 90° = 60°\r \n" ); document.write( "\n" ); document.write( "**4. Find RS and ST using Trigonometric Ratios**\r \n" ); document.write( "\n" ); document.write( "* Since ∠RST = 60° and ∠RTS = 90°, ∠SRT = 30° \r \n" ); document.write( "\n" ); document.write( "* **Find RS (hypotenuse):** \n" ); document.write( " * cos(∠SRT) = RS / RT \n" ); document.write( " * cos(30°) = RS / (8√2) \n" ); document.write( " * RS = 8√2 * cos(30°) \n" ); document.write( " * RS = 8√2 * (√3/2) \n" ); document.write( " * **RS = 4√6** \n" ); document.write( " * **RS ≈ 9.80**\r \n" ); document.write( "\n" ); document.write( "* **Find ST (opposite side to ∠SRT):** \n" ); document.write( " * sin(∠SRT) = ST / RT \n" ); document.write( " * sin(30°) = ST / (8√2) \n" ); document.write( " * ST = 8√2 * sin(30°) \n" ); document.write( " * ST = 8√2 * (1/2) \n" ); document.write( " * **ST = 4√2** \n" ); document.write( " * **ST ≈ 5.66**\r \n" ); document.write( "\n" ); document.write( "**Therefore:**\r \n" ); document.write( "\n" ); document.write( "* **simplest radical form RS = 4√6** \n" ); document.write( "* **approximation RS ≈ 9.80** \n" ); document.write( "* **simplest radical form ST = 4√2** \n" ); document.write( "* **approximation ST ≈ 5.66**\r \n" ); document.write( "\n" ); document.write( "**Note:** \r \n" ); document.write( "\n" ); document.write( "* Please double-check the given value of ∠STV. If it is indeed 150°, the calculations will need to be adjusted accordingly. \n" ); document.write( "* This solution assumes that ∠STV = 30° for a valid solution within the context of a right triangle. \n" ); document.write( " \n" ); document.write( " |