document.write( "Question 1194140: X and Y are independent, X ~ P(λ1), Y ~ P(λ2). Given probabilities P(X1 > 0) = 0.58, P(X2 > 0) = 0.43. Find the probability of P(X+Y=1) \n" ); document.write( "
Algebra.Com's Answer #848530 by parmen(42)\"\" \"About 
You can put this solution on YOUR website!
**1. Determine λ1 and λ2:**\r
\n" ); document.write( "\n" ); document.write( "* We know that for a Poisson distribution, P(X > 0) = 1 - P(X = 0)
\n" ); document.write( "* Since X ~ P(λ1), P(X = 0) = e^(-λ1)
\n" ); document.write( "* Therefore, P(X > 0) = 1 - e^(-λ1)
\n" ); document.write( "* Given P(X > 0) = 0.58, we can solve for λ1:
\n" ); document.write( " 0.58 = 1 - e^(-λ1)
\n" ); document.write( " e^(-λ1) = 0.42
\n" ); document.write( " λ1 = -ln(0.42) ≈ 0.8675\r
\n" ); document.write( "\n" ); document.write( "* Similarly, for Y ~ P(λ2):
\n" ); document.write( " P(Y > 0) = 1 - e^(-λ2)
\n" ); document.write( " Given P(Y > 0) = 0.43:
\n" ); document.write( " 0.43 = 1 - e^(-λ2)
\n" ); document.write( " e^(-λ2) = 0.57
\n" ); document.write( " λ2 = -ln(0.57) ≈ 0.5621\r
\n" ); document.write( "\n" ); document.write( "**2. Calculate P(X = 0) and P(Y = 0):**\r
\n" ); document.write( "\n" ); document.write( "* P(X = 0) = e^(-λ1) = e^(-0.8675) ≈ 0.42
\n" ); document.write( "* P(Y = 0) = e^(-λ2) = e^(-0.5621) ≈ 0.57\r
\n" ); document.write( "\n" ); document.write( "**3. Calculate P(X = 1) and P(Y = 1):**\r
\n" ); document.write( "\n" ); document.write( "* For a Poisson distribution, P(X = k) = (e^(-λ) * λ^k) / k!
\n" ); document.write( "* P(X = 1) = (e^(-λ1) * λ1^1) / 1! = e^(-0.8675) * 0.8675 ≈ 0.3698
\n" ); document.write( "* P(Y = 1) = (e^(-λ2) * λ2^1) / 1! = e^(-0.5621) * 0.5621 ≈ 0.3155\r
\n" ); document.write( "\n" ); document.write( "**4. Calculate P(X + Y = 1):**\r
\n" ); document.write( "\n" ); document.write( "* P(X + Y = 1) can occur in two ways:
\n" ); document.write( " * X = 1 and Y = 0
\n" ); document.write( " * X = 0 and Y = 1
\n" ); document.write( "* Since X and Y are independent:
\n" ); document.write( " P(X + Y = 1) = P(X = 1) * P(Y = 0) + P(X = 0) * P(Y = 1)
\n" ); document.write( " P(X + Y = 1) = 0.3698 * 0.57 + 0.42 * 0.3155 ≈ 0.3423\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the probability of P(X + Y = 1) is approximately 0.3423.**
\n" ); document.write( "
\n" ); document.write( "
\n" );