document.write( "Question 1194381: Given the following function in two variables x and y
\n" );
document.write( "f(x, y) = x^3y+2x^4+y^5
\n" );
document.write( "a. Find the Jacobean determinant at point P (3,2)
\n" );
document.write( "b. Find the Hessian determinant at point P (1,3)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #848526 by parmen(42)![]() ![]() ![]() You can put this solution on YOUR website! **a. Find the Jacobian Determinant at point P (3, 2)**\r \n" ); document.write( "\n" ); document.write( "1. **Calculate Partial Derivatives:**\r \n" ); document.write( "\n" ); document.write( " - ∂f/∂x = 3x²y + 8x³ \n" ); document.write( " - ∂f/∂y = x³ + 5y⁴\r \n" ); document.write( "\n" ); document.write( "2. **Evaluate Partial Derivatives at P (3, 2):**\r \n" ); document.write( "\n" ); document.write( " - ∂f/∂x(3, 2) = 3(3)²(2) + 8(3)³ = 54 + 216 = 270 \n" ); document.write( " - ∂f/∂y(3, 2) = (3)³ + 5(2)⁴ = 27 + 80 = 107\r \n" ); document.write( "\n" ); document.write( "3. **Construct the Jacobian Matrix:**\r \n" ); document.write( "\n" ); document.write( " - The Jacobian matrix is a 1x2 matrix: \n" ); document.write( " [ ∂f/∂x ∂f/∂y ] \n" ); document.write( " [ 270 107 ]\r \n" ); document.write( "\n" ); document.write( "4. **Calculate the Jacobian Determinant:**\r \n" ); document.write( "\n" ); document.write( " - Since it's a 1x2 matrix, the determinant is not defined. The Jacobian determinant is only defined for square matrices (where the number of rows equals the number of columns).\r \n" ); document.write( "\n" ); document.write( "**b. Find the Hessian Determinant at point P (1, 3)**\r \n" ); document.write( "\n" ); document.write( "1. **Calculate Second-Order Partial Derivatives:**\r \n" ); document.write( "\n" ); document.write( " - ∂²f/∂x² = 6xy + 24x² \n" ); document.write( " - ∂²f/∂y² = 20y³ \n" ); document.write( " - ∂²f/∂x∂y = 3x² \n" ); document.write( " - ∂²f/∂y∂x = 3x² \r \n" ); document.write( "\n" ); document.write( "2. **Evaluate Second-Order Partial Derivatives at P (1, 3):**\r \n" ); document.write( "\n" ); document.write( " - ∂²f/∂x²(1, 3) = 6(1)(3) + 24(1)² = 18 + 24 = 42 \n" ); document.write( " - ∂²f/∂y²(1, 3) = 20(3)³ = 540 \n" ); document.write( " - ∂²f/∂x∂y(1, 3) = 3(1)² = 3 \n" ); document.write( " - ∂²f/∂y∂x(1, 3) = 3(1)² = 3\r \n" ); document.write( "\n" ); document.write( "3. **Construct the Hessian Matrix:**\r \n" ); document.write( "\n" ); document.write( " - The Hessian matrix is a 2x2 matrix: \n" ); document.write( " [ ∂²f/∂x² ∂²f/∂x∂y ] \n" ); document.write( " [ ∂²f/∂y∂x ∂²f/∂y² ] \n" ); document.write( " [ 42 3 ] \n" ); document.write( " [ 3 540 ]\r \n" ); document.write( "\n" ); document.write( "4. **Calculate the Hessian Determinant:**\r \n" ); document.write( "\n" ); document.write( " - det(Hessian) = (42)(540) - (3)(3) = 22680 - 9 = 22671\r \n" ); document.write( "\n" ); document.write( "**Therefore:**\r \n" ); document.write( "\n" ); document.write( "* The Jacobian determinant at point P (3, 2) is not defined. \n" ); document.write( "* The Hessian determinant at point P (1, 3) is 22671. \n" ); document.write( " \n" ); document.write( " |