document.write( "Question 1194517: 1. Given: Z1= 2-2i , Z2= 3i and Z3= -3+i . Solve analytically and illustrate graphically. (Illustrate all 3 vectors and the result vector.)
\n" ); document.write( " (a) Z1-Z2+Z3 (b) Z3-Z2-Z1\r
\n" ); document.write( "\n" ); document.write( "2. Using the same given as Problem 1. Find:
\n" ); document.write( " (c) Z1*Z3 (d) Z3xZ2 (e) the acute angle between Z1 and Z2
\n" ); document.write( "

Algebra.Com's Answer #848459 by proyaop(69)\"\" \"About 
You can put this solution on YOUR website!
**1. Analytical Solutions**\r
\n" ); document.write( "\n" ); document.write( "**(a) Z1 - Z2 + Z3**\r
\n" ); document.write( "\n" ); document.write( "* Z1 - Z2 + Z3 = (2 - 2i) - 3i + (-3 + i)
\n" ); document.write( "* Z1 - Z2 + Z3 = 2 - 2i - 3i - 3 + i
\n" ); document.write( "* Z1 - Z2 + Z3 = -1 - 4i\r
\n" ); document.write( "\n" ); document.write( "**(b) Z3 - Z2 - Z1**\r
\n" ); document.write( "\n" ); document.write( "* Z3 - Z2 - Z1 = (-3 + i) - 3i - (2 - 2i)
\n" ); document.write( "* Z3 - Z2 - Z1 = -3 + i - 3i - 2 + 2i
\n" ); document.write( "* Z3 - Z2 - Z1 = -5 \r
\n" ); document.write( "\n" ); document.write( "**2. Graphical Illustration**\r
\n" ); document.write( "\n" ); document.write( "* **Represent complex numbers as vectors:**
\n" ); document.write( " * Z1 = 2 - 2i: Vector from origin to point (2, -2) in the complex plane.
\n" ); document.write( " * Z2 = 3i: Vector from origin to point (0, 3) in the complex plane.
\n" ); document.write( " * Z3 = -3 + i: Vector from origin to point (-3, 1) in the complex plane.\r
\n" ); document.write( "\n" ); document.write( "* **Perform vector operations graphically:**
\n" ); document.write( " * **(a) Z1 - Z2 + Z3:**
\n" ); document.write( " * Draw Z1.
\n" ); document.write( " * Draw -Z2 (vector Z2 in the opposite direction).
\n" ); document.write( " * Draw Z3.
\n" ); document.write( " * The vector sum Z1 - Z2 + Z3 is the resultant vector obtained by connecting the tail of Z1 to the head of Z3 after drawing -Z2. \r
\n" ); document.write( "\n" ); document.write( " * **(b) Z3 - Z2 - Z1:**
\n" ); document.write( " * Draw Z3.
\n" ); document.write( " * Draw -Z2.
\n" ); document.write( " * Draw -Z1 (vector Z1 in the opposite direction).
\n" ); document.write( " * The vector sum Z3 - Z2 - Z1 is the resultant vector obtained by connecting the tail of Z3 to the head of -Z1 after drawing -Z2.\r
\n" ); document.write( "\n" ); document.write( "**3. Further Calculations**\r
\n" ); document.write( "\n" ); document.write( "**(c) Z1 * Z3**\r
\n" ); document.write( "\n" ); document.write( "* Z1 * Z3 = (2 - 2i) * (-3 + i)
\n" ); document.write( "* Z1 * Z3 = -6 + 2i + 6i - 2i²
\n" ); document.write( "* Z1 * Z3 = -6 + 8i + 2 (since i² = -1)
\n" ); document.write( "* Z1 * Z3 = -4 + 8i\r
\n" ); document.write( "\n" ); document.write( "**(d) Z3 x Z2**\r
\n" ); document.write( "\n" ); document.write( "* The cross product is not defined for complex numbers in the same way it is for vectors in 3D space. \r
\n" ); document.write( "\n" ); document.write( "**(e) Acute Angle between Z1 and Z2**\r
\n" ); document.write( "\n" ); document.write( "* Find the magnitudes of Z1 and Z2:
\n" ); document.write( " * |Z1| = √(2² + (-2)²) = √8 = 2√2
\n" ); document.write( " * |Z2| = √(0² + 3²) = 3\r
\n" ); document.write( "\n" ); document.write( "* Find the dot product of Z1 and Z2:
\n" ); document.write( " * Z1 • Z2 = (2 * 0) + (-2 * 3) = -6\r
\n" ); document.write( "\n" ); document.write( "* Use the dot product formula:
\n" ); document.write( " * cos(θ) = (Z1 • Z2) / (|Z1| * |Z2|)
\n" ); document.write( " * cos(θ) = -6 / (2√2 * 3)
\n" ); document.write( " * cos(θ) = -√2 / 2
\n" ); document.write( " * θ = 135° \r
\n" ); document.write( "\n" ); document.write( "* The acute angle between Z1 and Z2 is 180° - 135° = 45°.\r
\n" ); document.write( "\n" ); document.write( "**Note:**\r
\n" ); document.write( "\n" ); document.write( "* Graphical representation can be done using a complex plane (Argand diagram).
\n" ); document.write( "* You can use graphing software or tools to plot the complex numbers and visualize the vector operations.\r
\n" ); document.write( "\n" ); document.write( "I hope this comprehensive explanation helps!
\n" ); document.write( "
\n" ); document.write( "
\n" );