document.write( "Question 1194517: 1. Given: Z1= 2-2i , Z2= 3i and Z3= -3+i . Solve analytically and illustrate graphically. (Illustrate all 3 vectors and the result vector.)
\n" );
document.write( " (a) Z1-Z2+Z3 (b) Z3-Z2-Z1\r
\n" );
document.write( "\n" );
document.write( "2. Using the same given as Problem 1. Find:
\n" );
document.write( " (c) Z1*Z3 (d) Z3xZ2 (e) the acute angle between Z1 and Z2 \n" );
document.write( "
Algebra.Com's Answer #848459 by proyaop(69)![]() ![]() ![]() You can put this solution on YOUR website! **1. Analytical Solutions**\r \n" ); document.write( "\n" ); document.write( "**(a) Z1 - Z2 + Z3**\r \n" ); document.write( "\n" ); document.write( "* Z1 - Z2 + Z3 = (2 - 2i) - 3i + (-3 + i) \n" ); document.write( "* Z1 - Z2 + Z3 = 2 - 2i - 3i - 3 + i \n" ); document.write( "* Z1 - Z2 + Z3 = -1 - 4i\r \n" ); document.write( "\n" ); document.write( "**(b) Z3 - Z2 - Z1**\r \n" ); document.write( "\n" ); document.write( "* Z3 - Z2 - Z1 = (-3 + i) - 3i - (2 - 2i) \n" ); document.write( "* Z3 - Z2 - Z1 = -3 + i - 3i - 2 + 2i \n" ); document.write( "* Z3 - Z2 - Z1 = -5 \r \n" ); document.write( "\n" ); document.write( "**2. Graphical Illustration**\r \n" ); document.write( "\n" ); document.write( "* **Represent complex numbers as vectors:** \n" ); document.write( " * Z1 = 2 - 2i: Vector from origin to point (2, -2) in the complex plane. \n" ); document.write( " * Z2 = 3i: Vector from origin to point (0, 3) in the complex plane. \n" ); document.write( " * Z3 = -3 + i: Vector from origin to point (-3, 1) in the complex plane.\r \n" ); document.write( "\n" ); document.write( "* **Perform vector operations graphically:** \n" ); document.write( " * **(a) Z1 - Z2 + Z3:** \n" ); document.write( " * Draw Z1. \n" ); document.write( " * Draw -Z2 (vector Z2 in the opposite direction). \n" ); document.write( " * Draw Z3. \n" ); document.write( " * The vector sum Z1 - Z2 + Z3 is the resultant vector obtained by connecting the tail of Z1 to the head of Z3 after drawing -Z2. \r \n" ); document.write( "\n" ); document.write( " * **(b) Z3 - Z2 - Z1:** \n" ); document.write( " * Draw Z3. \n" ); document.write( " * Draw -Z2. \n" ); document.write( " * Draw -Z1 (vector Z1 in the opposite direction). \n" ); document.write( " * The vector sum Z3 - Z2 - Z1 is the resultant vector obtained by connecting the tail of Z3 to the head of -Z1 after drawing -Z2.\r \n" ); document.write( "\n" ); document.write( "**3. Further Calculations**\r \n" ); document.write( "\n" ); document.write( "**(c) Z1 * Z3**\r \n" ); document.write( "\n" ); document.write( "* Z1 * Z3 = (2 - 2i) * (-3 + i) \n" ); document.write( "* Z1 * Z3 = -6 + 2i + 6i - 2i² \n" ); document.write( "* Z1 * Z3 = -6 + 8i + 2 (since i² = -1) \n" ); document.write( "* Z1 * Z3 = -4 + 8i\r \n" ); document.write( "\n" ); document.write( "**(d) Z3 x Z2**\r \n" ); document.write( "\n" ); document.write( "* The cross product is not defined for complex numbers in the same way it is for vectors in 3D space. \r \n" ); document.write( "\n" ); document.write( "**(e) Acute Angle between Z1 and Z2**\r \n" ); document.write( "\n" ); document.write( "* Find the magnitudes of Z1 and Z2: \n" ); document.write( " * |Z1| = √(2² + (-2)²) = √8 = 2√2 \n" ); document.write( " * |Z2| = √(0² + 3²) = 3\r \n" ); document.write( "\n" ); document.write( "* Find the dot product of Z1 and Z2: \n" ); document.write( " * Z1 • Z2 = (2 * 0) + (-2 * 3) = -6\r \n" ); document.write( "\n" ); document.write( "* Use the dot product formula: \n" ); document.write( " * cos(θ) = (Z1 • Z2) / (|Z1| * |Z2|) \n" ); document.write( " * cos(θ) = -6 / (2√2 * 3) \n" ); document.write( " * cos(θ) = -√2 / 2 \n" ); document.write( " * θ = 135° \r \n" ); document.write( "\n" ); document.write( "* The acute angle between Z1 and Z2 is 180° - 135° = 45°.\r \n" ); document.write( "\n" ); document.write( "**Note:**\r \n" ); document.write( "\n" ); document.write( "* Graphical representation can be done using a complex plane (Argand diagram). \n" ); document.write( "* You can use graphing software or tools to plot the complex numbers and visualize the vector operations.\r \n" ); document.write( "\n" ); document.write( "I hope this comprehensive explanation helps! \n" ); document.write( " \n" ); document.write( " |