document.write( "Question 1199609: Suppose the demand function for a monopoly's product is P=400-2Q and the average cost function is 𝐴𝐶=400/Q+4+0.2𝑄, where Q is the number of units and p is the price per unit. i) Write the Total Cost (TC) and Total Revenue (TR) functions. ii) Calculate the profit maximizing price and quantity. Determine the maximum profit. \n" ); document.write( "
Algebra.Com's Answer #848446 by ElectricPavlov(122)![]() ![]() ![]() You can put this solution on YOUR website! **i) Find Total Cost (TC) and Total Revenue (TR) functions**\r \n" ); document.write( "\n" ); document.write( "* **Total Cost (TC):** \n" ); document.write( " * TC = (Average Cost) * Q \n" ); document.write( " * TC = (400/Q + 4 + 0.2Q) * Q \n" ); document.write( " * TC = 400 + 4Q + 0.2Q²\r \n" ); document.write( "\n" ); document.write( "* **Total Revenue (TR):** \n" ); document.write( " * TR = Price (P) * Quantity (Q) \n" ); document.write( " * TR = (400 - 2Q) * Q \n" ); document.write( " * TR = 400Q - 2Q²\r \n" ); document.write( "\n" ); document.write( "**ii) Calculate Profit-Maximizing Price and Quantity**\r \n" ); document.write( "\n" ); document.write( "1. **Find Marginal Cost (MC):** \n" ); document.write( " * MC = d(TC)/dQ = 4 + 0.4Q\r \n" ); document.write( "\n" ); document.write( "2. **Find Marginal Revenue (MR):** \n" ); document.write( " * MR = d(TR)/dQ = 400 - 4Q\r \n" ); document.write( "\n" ); document.write( "3. **Set MR = MC to find profit-maximizing quantity:** \n" ); document.write( " * 400 - 4Q = 4 + 0.4Q \n" ); document.write( " * 396 = 4.4Q \n" ); document.write( " * Q = 90 units\r \n" ); document.write( "\n" ); document.write( "4. **Find profit-maximizing price:** \n" ); document.write( " * P = 400 - 2Q \n" ); document.write( " * P = 400 - 2 * 90 \n" ); document.write( " * P = 220\r \n" ); document.write( "\n" ); document.write( "5. **Calculate Maximum Profit:** \n" ); document.write( " * Profit (π) = TR - TC \n" ); document.write( " * π = (220 * 90) - (400 + 4 * 90 + 0.2 * 90²) \n" ); document.write( " * π = 19800 - (400 + 360 + 1620) \n" ); document.write( " * π = 19800 - 2480 \n" ); document.write( " * π = 17320\r \n" ); document.write( "\n" ); document.write( "**Therefore:**\r \n" ); document.write( "\n" ); document.write( "* **Profit-maximizing quantity (Q): 90 units** \n" ); document.write( "* **Profit-maximizing price (P): $220** \n" ); document.write( "* **Maximum Profit: $17,320** \n" ); document.write( " \n" ); document.write( " |