document.write( "Question 1195912: A marketing manager at a big retail shop claims that the variance in the weights of cereal boxes are less
\n" );
document.write( "than 0.003 kilogram
\n" );
document.write( "2
\n" );
document.write( ". Thus, the weights (in kilograms) of a random sample of eight of these cereal boxes\r
\n" );
document.write( "\n" );
document.write( "are listed here.\r
\n" );
document.write( "\n" );
document.write( "1.07 .98 .95 1.05 .99 1.09 1.03 .96\r
\n" );
document.write( "\n" );
document.write( "4.1 Test this clam at a 1 % level of significance (8 marks)
\n" );
document.write( "4.2 Estimate the variance of the entire population of cereal box weights with 90% confidence.
\n" );
document.write( "(7 marks) \n" );
document.write( "
Algebra.Com's Answer #848439 by ElectricPavlov(122)![]() ![]() ![]() You can put this solution on YOUR website! **4.1 Test this claim at a 1% level of significance**\r \n" ); document.write( "\n" ); document.write( "**1. Hypotheses**\r \n" ); document.write( "\n" ); document.write( "* **Null Hypothesis (H₀):** σ² ≥ 0.003 (Variance of cereal box weights is greater than or equal to 0.003 kg²) \n" ); document.write( "* **Alternative Hypothesis (H₁):** σ² < 0.003 (Variance of cereal box weights is less than 0.003 kg²)\r \n" ); document.write( "\n" ); document.write( "**2. Calculate Sample Statistics**\r \n" ); document.write( "\n" ); document.write( "* **Sample Mean (x̄):** \n" ); document.write( " * x̄ = (1.07 + 0.98 + 0.95 + 1.05 + 0.99 + 1.09 + 1.03 + 0.96) / 8 = 1.015 kg\r \n" ); document.write( "\n" ); document.write( "* **Sample Variance (s²):** \n" ); document.write( " * Calculate the squared deviations from the mean: \n" ); document.write( " * (1.07 - 1.015)² = 0.002925 \n" ); document.write( " * (0.98 - 1.015)² = 0.001225 \n" ); document.write( " * ... and so on for all data points \n" ); document.write( " * Sum the squared deviations. \n" ); document.write( " * Divide the sum of squared deviations by (n - 1) = 7 to get the sample variance (s²) \n" ); document.write( " * s² ≈ 0.001486 kg²\r \n" ); document.write( "\n" ); document.write( "**3. Calculate Test Statistic**\r \n" ); document.write( "\n" ); document.write( "* **Chi-Square Test Statistic:** \n" ); document.write( " * χ² = (n - 1) * s² / σ₀² \n" ); document.write( " * where: \n" ); document.write( " * n: sample size (8) \n" ); document.write( " * s²: sample variance (0.001486 kg²) \n" ); document.write( " * σ₀²: hypothesized population variance (0.003 kg²)\r \n" ); document.write( "\n" ); document.write( " * χ² = (8 - 1) * 0.001486 / 0.003 \n" ); document.write( " * χ² ≈ 3.46\r \n" ); document.write( "\n" ); document.write( "**4. Determine Critical Value**\r \n" ); document.write( "\n" ); document.write( "* **Degrees of Freedom:** df = n - 1 = 8 - 1 = 7 \n" ); document.write( "* **Significance Level:** α = 0.01 (1%) \n" ); document.write( "* **Chi-Square Distribution Table:** \n" ); document.write( " * Find the critical value (χ²_critical) from the chi-square distribution table with 7 degrees of freedom and α = 0.01. \n" ); document.write( " * For a one-tailed test with α = 0.01 and df = 7, χ²_critical ≈ 2.167\r \n" ); document.write( "\n" ); document.write( "**5. Decision Rule**\r \n" ); document.write( "\n" ); document.write( "* **Reject H₀ if χ² < χ²_critical**\r \n" ); document.write( "\n" ); document.write( "**6. Make a Decision**\r \n" ); document.write( "\n" ); document.write( "* Since our calculated χ² (3.46) is greater than the critical value (2.167), we **fail to reject the null hypothesis**. \r \n" ); document.write( "\n" ); document.write( "**7. Conclusion**\r \n" ); document.write( "\n" ); document.write( "* There is not enough evidence at the 1% level of significance to support the claim that the variance in the weights of cereal boxes is less than 0.003 kg².\r \n" ); document.write( "\n" ); document.write( "**4.2 Estimate the Variance of the Population with 90% Confidence**\r \n" ); document.write( "\n" ); document.write( "* **Confidence Level:** 90% \n" ); document.write( "* **Degrees of Freedom:** df = n - 1 = 7 \n" ); document.write( "* **Find Chi-Square Values:** \n" ); document.write( " * Find the chi-square values (χ²_lower and χ²_upper) from the chi-square distribution table for 7 degrees of freedom and 5% and 95% significance levels (since it's a two-tailed interval). \n" ); document.write( " * χ²_lower ≈ 2.167 \n" ); document.write( " * χ²_upper ≈ 14.067\r \n" ); document.write( "\n" ); document.write( "* **Calculate Confidence Interval:** \n" ); document.write( " * Lower Bound: (n - 1) * s² / χ²_upper = 7 * 0.001486 / 14.067 ≈ 0.000738 \n" ); document.write( " * Upper Bound: (n - 1) * s² / χ²_lower = 7 * 0.001486 / 2.167 ≈ 0.004809\r \n" ); document.write( "\n" ); document.write( "**Conclusion:**\r \n" ); document.write( "\n" ); document.write( "* We are 90% confident that the true variance of the population of cereal box weights lies between 0.000738 kg² and 0.004809 kg².\r \n" ); document.write( "\n" ); document.write( "**Note:**\r \n" ); document.write( "\n" ); document.write( "* This analysis assumes that the weights of the cereal boxes are normally distributed. \n" ); document.write( "* The chi-square distribution is used to estimate the population variance. \n" ); document.write( " \n" ); document.write( " |