document.write( "Question 1196138: Given P = ( 3 0 2
\n" );
document.write( "2 1 2
\n" );
document.write( " -3 -4 -6 )
\n" );
document.write( "a) if ( 2 6 n
\n" );
document.write( "-2 m 9
\n" );
document.write( "0 -2 1 ) is the cofactor of matrix P, find the values of m and without finding a new cofactor matrix.
\n" );
document.write( "b) find the adjoint matrix of P hence, find P-1 (identity P)
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #848405 by ElectricPavlov(122)![]() ![]() ![]() You can put this solution on YOUR website! **a) Finding the values of m and n**\r \n" ); document.write( "\n" ); document.write( "* **Understand Cofactor Matrix:** \n" ); document.write( " * The cofactor of an element in a matrix is calculated by: \n" ); document.write( " * Finding the minor (determinant of the submatrix obtained by removing the row and column of the element). \n" ); document.write( " * Multiplying the minor by (-1)^(i+j), where i and j are the row and column indices of the element.\r \n" ); document.write( "\n" ); document.write( "* **Determine Cofactors:** \n" ); document.write( " * We are given the following cofactors: \n" ); document.write( " * Cofactor of the element '3' (row 1, column 1) = 2 \n" ); document.write( " * Cofactor of the element '0' (row 1, column 2) = 6 \n" ); document.write( " * Cofactor of the element '2' (row 1, column 3) = n \n" ); document.write( " * Cofactor of the element '2' (row 2, column 1) = -2 \n" ); document.write( " * Cofactor of the element '1' (row 2, column 2) = m \n" ); document.write( " * Cofactor of the element '2' (row 2, column 3) = 9 \n" ); document.write( " * Cofactor of the element '-3' (row 3, column 1) = 0 \n" ); document.write( " * Cofactor of the element '-4' (row 3, column 2) = -2 \n" ); document.write( " * Cofactor of the element '-6' (row 3, column 3) = 1\r \n" ); document.write( "\n" ); document.write( "* **Calculate Cofactors:** \n" ); document.write( " * **Cofactor of '3':** \n" ); document.write( " * Minor: det([ 1 2 ; -4 -6 ]) = 1*(-6) - 2*(-4) = -6 + 8 = 2 \n" ); document.write( " * Cofactor: (-1)^(1+1) * 2 = 1 * 2 = 2 (Matches the given value)\r \n" ); document.write( "\n" ); document.write( " * **Cofactor of '0':** \n" ); document.write( " * Minor: det([ 2 2 ; -1 -6 ]) = 2*(-6) - 2*(-1) = -12 + 2 = -10 \n" ); document.write( " * Cofactor: (-1)^(1+2) * (-10) = -1 * (-10) = 10 \n" ); document.write( " * **Therefore, n = 10**\r \n" ); document.write( "\n" ); document.write( " * **Cofactor of '2':** \n" ); document.write( " * Minor: det([ 2 1 ; -1 -4 ]) = 2*(-4) - 1*(-1) = -8 + 1 = -7 \n" ); document.write( " * Cofactor: (-1)^(1+3) * (-7) = 1 * (-7) = -7 \n" ); document.write( " * **Therefore, n = -7**\r \n" ); document.write( "\n" ); document.write( " * **Cofactor of '2':** \n" ); document.write( " * Minor: det([ 0 2 ; -4 -6 ]) = 0*(-6) - 2*(-4) = 8 \n" ); document.write( " * Cofactor: (-1)^(2+1) * 8 = -1 * 8 = -8 \n" ); document.write( " * **Therefore, m = -8**\r \n" ); document.write( "\n" ); document.write( "**b) Find the Adjoint Matrix of P and P-1**\r \n" ); document.write( "\n" ); document.write( "* **Find the Cofactor Matrix:** \n" ); document.write( " * Using the calculated cofactors and the remaining cofactors (which you can calculate similarly), construct the cofactor matrix:\r \n" ); document.write( "\n" ); document.write( " [ 2 6 -7 \n" ); document.write( " -2 -8 9 \n" ); document.write( " 0 -2 1 ]\r \n" ); document.write( "\n" ); document.write( "* **Find the Adjoint Matrix:** \n" ); document.write( " * The adjoint of a matrix is the transpose of its cofactor matrix. \r \n" ); document.write( "\n" ); document.write( " [ 2 -2 0 \n" ); document.write( " 6 -8 -2 \n" ); document.write( " -7 9 1 ]\r \n" ); document.write( "\n" ); document.write( "* **Find the Determinant of P:** \n" ); document.write( " * det(P) = 3 * det([ 1 2 ; -4 -6 ]) - 0 * det([ 2 2 ; -1 -6 ]) + 2 * det([ 2 1 ; -1 -4 ]) \n" ); document.write( " * det(P) = 3 * 2 - 0 * (-10) + 2 * (-7) \n" ); document.write( " * det(P) = 6 - 14 \n" ); document.write( " * det(P) = -8\r \n" ); document.write( "\n" ); document.write( "* **Find the Inverse of P (P-1):** \n" ); document.write( " * P-1 = (1/det(P)) * adj(P) \n" ); document.write( " * P-1 = (-1/8) * [ 2 -2 0 \n" ); document.write( " 6 -8 -2 \n" ); document.write( " -7 9 1 ]\r \n" ); document.write( "\n" ); document.write( " * P-1 = [ -1/4 1/4 0 \n" ); document.write( " -3/4 1 1/4 \n" ); document.write( " 7/8 -9/8 -1/8 ]\r \n" ); document.write( "\n" ); document.write( "**Therefore:**\r \n" ); document.write( "\n" ); document.write( "* **m = -8** \n" ); document.write( "* **n = -7** \n" ); document.write( "* **The adjoint matrix of P is:** \n" ); document.write( " [ 2 -2 0 \n" ); document.write( " 6 -8 -2 \n" ); document.write( " -7 9 1 ] \n" ); document.write( "* **The inverse of P (P-1) is:** \n" ); document.write( " [ -1/4 1/4 0 \n" ); document.write( " -3/4 1 1/4 \n" ); document.write( " 7/8 -9/8 -1/8 ] \n" ); document.write( " \n" ); document.write( " |