document.write( "Question 1196934: A computer manufacturer offers technical support that is available 24 hours a day,
\n" ); document.write( "7 days a week. Timely resolution of these calls is important to the company’s image. For
\n" ); document.write( "35 calls that were related to software, technicians resolved the issues in a mean time of
\n" ); document.write( "18 minutes with a standard deviation of 4.2 minutes. For 45 calls related to hardware,
\n" ); document.write( "technicians resolved the problems in a mean time of 15.5 minutes with a standard deviation of 3.9 minutes. At the .05 significance level, does it take longer to resolve software
\n" ); document.write( "issues? What is the p-value?
\n" ); document.write( "Giva Farmula for calculating when you have two sample test of mean and SD is unknown?\r
\n" ); document.write( "\n" ); document.write( "State what will be null hypothesis and alternate hypotheses at05 significance level. Dose it take longer to resolve software issues
\n" ); document.write( "

Algebra.Com's Answer #848388 by ElectricPavlov(122)\"\" \"About 
You can put this solution on YOUR website!
We will conduct a two-sample t-test to determine whether it takes longer to resolve software issues compared to hardware issues. Here's the step-by-step process:\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### Formula for Two-Sample t-Test (Unequal Variances)\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "t = \frac{\bar{X}_1 - \bar{X}_2}{\sqrt{\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}}}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "Where:
\n" ); document.write( "- \(\bar{X}_1, \bar{X}_2\): Sample means
\n" ); document.write( "- \(s_1, s_2\): Sample standard deviations
\n" ); document.write( "- \(n_1, n_2\): Sample sizes\r
\n" ); document.write( "\n" ); document.write( "Degrees of freedom (\(df\)) are approximated as:\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "df = \frac{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)^2}{\frac{\left(\frac{s_1^2}{n_1}\right)^2}{n_1 - 1} + \frac{\left(\frac{s_2^2}{n_2}\right)^2}{n_2 - 1}}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### Hypotheses\r
\n" ); document.write( "\n" ); document.write( "- **Null Hypothesis (\(H_0\))**: There is no difference in the time taken to resolve software and hardware issues (\(\mu_1 = \mu_2\)).
\n" ); document.write( "- **Alternative Hypothesis (\(H_a\))**: It takes longer to resolve software issues (\(\mu_1 > \mu_2\)).\r
\n" ); document.write( "\n" ); document.write( "This is a **one-tailed test** at the 0.05 significance level.\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### Given Data\r
\n" ); document.write( "\n" ); document.write( "- Software calls:
\n" ); document.write( " - \(n_1 = 35\), \(\bar{X}_1 = 18\), \(s_1 = 4.2\)
\n" ); document.write( "- Hardware calls:
\n" ); document.write( " - \(n_2 = 45\), \(\bar{X}_2 = 15.5\), \(s_2 = 3.9\)\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### Step 1: Calculate the Test Statistic\r
\n" ); document.write( "\n" ); document.write( "Substitute the values into the t-test formula:\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "t = \frac{18 - 15.5}{\sqrt{\frac{4.2^2}{35} + \frac{3.9^2}{45}}}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "t = \frac{2.5}{\sqrt{\frac{17.64}{35} + \frac{15.21}{45}}}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "t = \frac{2.5}{\sqrt{0.504 + 0.338}}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "t = \frac{2.5}{\sqrt{0.842}} = \frac{2.5}{0.9177} \approx 2.72
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### Step 2: Degrees of Freedom\r
\n" ); document.write( "\n" ); document.write( "Calculate \(df\):\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "df = \frac{\left(0.504 + 0.338\right)^2}{\frac{0.504^2}{34} + \frac{0.338^2}{44}}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "df = \frac{0.842^2}{\frac{0.254}{34} + \frac{0.114}{44}} = \frac{0.708}{0.00747 + 0.00259} = \frac{0.708}{0.01006} \approx 70.34
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "Round \(df\) to 70 for simplicity.\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### Step 3: Compare to Critical Value and Find p-Value\r
\n" ); document.write( "\n" ); document.write( "For a one-tailed test at \(\alpha = 0.05\) and \(df = 70\), the critical \(t\)-value is approximately **1.667**.\r
\n" ); document.write( "\n" ); document.write( "Since \(t = 2.72 > 1.667\), we reject \(H_0\).\r
\n" ); document.write( "\n" ); document.write( "To find the p-value, use a t-distribution table or software. The p-value for \(t = 2.72\) with \(df = 70\) is approximately **0.004**.\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### Conclusion\r
\n" ); document.write( "\n" ); document.write( "- **At the 0.05 significance level**, we conclude that it takes longer to resolve software issues.
\n" ); document.write( "- **p-value**: \(0.004\)
\n" ); document.write( "
\n" );