document.write( "Question 1197579: The price - demand equation and the costfunction for the production of
\n" ); document.write( "honey is given, respectively, by
\n" ); document.write( "x = 5,000 - 100p and C(x) = 2,500 + 4x+ 0.01x2
\n" ); document.write( "where x is the number of bottles that can be sold at a price of $p per
\n" ); document.write( "bottle and C(x) is the total cost (in dollars) of producing x bottles.\r
\n" ); document.write( "\n" ); document.write( "a) Express the price p as a function of the demand x, and find the domain of
\n" ); document.write( "this function.
\n" ); document.write( "b) Find the marginal cost.
\n" ); document.write( "c) Find the revenue function and state its domain.
\n" ); document.write( "d) Find the marginal revenue.
\n" ); document.write( "e) Find R′(2,000) and R′(3,000) and interpret these quantities.
\n" ); document.write( "f) Find the profit function in terms of x.
\n" ); document.write( "g) Find the marginal profit.
\n" ); document.write( "h) Find P′(1,000) and P′(1,500) and interpret these quantities.
\n" ); document.write( "

Algebra.Com's Answer #848355 by onyulee(41)\"\" \"About 
You can put this solution on YOUR website!
\r
\n" ); document.write( "\n" ); document.write( "**a) Express the price p as a function of the demand x, and find the domain of this function.**\r
\n" ); document.write( "\n" ); document.write( "* Given: x = 5,000 - 100p
\n" ); document.write( "* Solve for p:
\n" ); document.write( " * 100p = 5,000 - x
\n" ); document.write( " * p = (5,000 - x) / 100
\n" ); document.write( " * p = 50 - 0.01x\r
\n" ); document.write( "\n" ); document.write( "* **Domain:**
\n" ); document.write( " * The demand (x) must be non-negative (you can't sell a negative number of bottles).
\n" ); document.write( " * The price (p) must also be non-negative.
\n" ); document.write( " *
\n" ); document.write( " * 50 - 0.01x ≥ 0
\n" ); document.write( " * 0.01x ≤ 50
\n" ); document.write( " * x ≤ 5,000\r
\n" ); document.write( "\n" ); document.write( " * **Therefore, the domain of the price function is 0 ≤ x ≤ 5,000**\r
\n" ); document.write( "\n" ); document.write( "**b) Find the marginal cost.**\r
\n" ); document.write( "\n" ); document.write( "* **Marginal Cost:** The derivative of the cost function with respect to x.
\n" ); document.write( "* C(x) = 2,500 + 4x + 0.01x^2
\n" ); document.write( "* C'(x) = 4 + 0.02x\r
\n" ); document.write( "\n" ); document.write( "**c) Find the revenue function and state its domain.**\r
\n" ); document.write( "\n" ); document.write( "* **Revenue (R) = Price (p) * Quantity (x)**
\n" ); document.write( "* R(x) = p * x
\n" ); document.write( "* R(x) = (50 - 0.01x) * x
\n" ); document.write( "* R(x) = 50x - 0.01x^2\r
\n" ); document.write( "\n" ); document.write( "* **Domain:** The domain of the revenue function is the same as the domain of the price function, which is 0 ≤ x ≤ 5,000.\r
\n" ); document.write( "\n" ); document.write( "**d) Find the marginal revenue.**\r
\n" ); document.write( "\n" ); document.write( "* **Marginal Revenue:** The derivative of the revenue function with respect to x.
\n" ); document.write( "* R(x) = 50x - 0.01x^2
\n" ); document.write( "* R'(x) = 50 - 0.02x\r
\n" ); document.write( "\n" ); document.write( "**e) Find R′(2,000) and R′(3,000) and interpret these quantities.**\r
\n" ); document.write( "\n" ); document.write( "* R'(2,000) = 50 - 0.02 * 2,000 = 50 - 40 = 10
\n" ); document.write( " * When producing 2,000 bottles, the revenue is increasing at a rate of $10 per additional bottle.\r
\n" ); document.write( "\n" ); document.write( "* R'(3,000) = 50 - 0.02 * 3,000 = 50 - 60 = -10
\n" ); document.write( " * When producing 3,000 bottles, the revenue is decreasing at a rate of $10 per additional bottle.\r
\n" ); document.write( "\n" ); document.write( "**f) Find the profit function in terms of x.**\r
\n" ); document.write( "\n" ); document.write( "* **Profit (P) = Revenue (R) - Cost (C)**
\n" ); document.write( "* P(x) = R(x) - C(x)
\n" ); document.write( "* P(x) = (50x - 0.01x^2) - (2,500 + 4x + 0.01x^2)
\n" ); document.write( "* P(x) = 50x - 0.01x^2 - 2,500 - 4x - 0.01x^2
\n" ); document.write( "* P(x) = 46x - 0.02x^2 - 2,500\r
\n" ); document.write( "\n" ); document.write( "**g) Find the marginal profit.**\r
\n" ); document.write( "\n" ); document.write( "* **Marginal Profit:** The derivative of the profit function with respect to x.
\n" ); document.write( "* P(x) = 46x - 0.02x^2 - 2,500
\n" ); document.write( "* P'(x) = 46 - 0.04x\r
\n" ); document.write( "\n" ); document.write( "**h) Find P′(1,000) and P′(1,500) and interpret these quantities.**\r
\n" ); document.write( "\n" ); document.write( "* P'(1,000) = 46 - 0.04 * 1,000 = 46 - 40 = 6
\n" ); document.write( " * When producing 1,000 bottles, the profit is increasing at a rate of $6 per additional bottle.\r
\n" ); document.write( "\n" ); document.write( "* P'(1,500) = 46 - 0.04 * 1,500 = 46 - 60 = -14
\n" ); document.write( " * When producing 1,500 bottles, the profit is decreasing at a rate of $14 per additional bottle.
\n" ); document.write( "**a) Express the price p as a function of the demand x, and find the domain of this function.**\r
\n" ); document.write( "\n" ); document.write( "* **Solve the price-demand equation for p:**
\n" ); document.write( " * x = 5,000 - 100p
\n" ); document.write( " * 100p = 5,000 - x
\n" ); document.write( " * p = (5,000 - x) / 100
\n" ); document.write( " * p = 50 - 0.01x\r
\n" ); document.write( "\n" ); document.write( "* **Domain of the price function:**
\n" ); document.write( " * The demand (x) must be non-negative (you cannot sell a negative number of bottles).
\n" ); document.write( " * 0 ≤ x ≤ 5,000 (The maximum demand occurs when the price is 0)\r
\n" ); document.write( "\n" ); document.write( "**b) Find the marginal cost.**\r
\n" ); document.write( "\n" ); document.write( "* **Marginal Cost (MC):** The derivative of the cost function with respect to x.
\n" ); document.write( " * MC = C'(x) = d/dx (2,500 + 4x + 0.01x²)
\n" ); document.write( " * MC = 4 + 0.02x\r
\n" ); document.write( "\n" ); document.write( "**c) Find the revenue function and state its domain.**\r
\n" ); document.write( "\n" ); document.write( "* **Revenue (R):** Price per unit * Number of units sold
\n" ); document.write( " * R(x) = p * x
\n" ); document.write( " * R(x) = (50 - 0.01x) * x
\n" ); document.write( " * R(x) = 50x - 0.01x²\r
\n" ); document.write( "\n" ); document.write( "* **Domain of the revenue function:**
\n" ); document.write( " * Same as the domain of the price function: 0 ≤ x ≤ 5,000\r
\n" ); document.write( "\n" ); document.write( "**d) Find the marginal revenue.**\r
\n" ); document.write( "\n" ); document.write( "* **Marginal Revenue (MR):** The derivative of the revenue function with respect to x.
\n" ); document.write( " * MR = R'(x) = d/dx (50x - 0.01x²)
\n" ); document.write( " * MR = 50 - 0.02x\r
\n" ); document.write( "\n" ); document.write( "**e) Find R′(2,000) and R′(3,000) and interpret these quantities.**\r
\n" ); document.write( "\n" ); document.write( "* **R'(2,000):**
\n" ); document.write( " * R'(2,000) = 50 - 0.02 * 2,000 = 50 - 40 = 10
\n" ); document.write( " * Interpretation: When 2,000 bottles are sold, the revenue is increasing at a rate of $10 per additional bottle sold.\r
\n" ); document.write( "\n" ); document.write( "* **R'(3,000):**
\n" ); document.write( " * R'(3,000) = 50 - 0.02 * 3,000 = 50 - 60 = -10
\n" ); document.write( " * Interpretation: When 3,000 bottles are sold, the revenue is decreasing at a rate of $10 per additional bottle sold.\r
\n" ); document.write( "\n" ); document.write( "**f) Find the profit function in terms of x.**\r
\n" ); document.write( "\n" ); document.write( "* **Profit (P):** Revenue - Cost
\n" ); document.write( " * P(x) = R(x) - C(x)
\n" ); document.write( " * P(x) = (50x - 0.01x²) - (2,500 + 4x + 0.01x²)
\n" ); document.write( " * P(x) = 46x - 0.02x² - 2,500\r
\n" ); document.write( "\n" ); document.write( "**g) Find the marginal profit.**\r
\n" ); document.write( "\n" ); document.write( "* **Marginal Profit (MP):** The derivative of the profit function with respect to x.
\n" ); document.write( " * MP = P'(x) = d/dx (46x - 0.02x² - 2,500)
\n" ); document.write( " * MP = 46 - 0.04x\r
\n" ); document.write( "\n" ); document.write( "**h) Find P′(1,000) and P′(1,500) and interpret these quantities.**\r
\n" ); document.write( "\n" ); document.write( "* **P'(1,000):**
\n" ); document.write( " * P'(1,000) = 46 - 0.04 * 1,000 = 46 - 40 = 6
\n" ); document.write( " * Interpretation: When 1,000 bottles are sold, the profit is increasing at a rate of $6 per additional bottle sold.\r
\n" ); document.write( "\n" ); document.write( "* **P'(1,500):**
\n" ); document.write( " * P'(1,500) = 46 - 0.04 * 1,500 = 46 - 60 = -14
\n" ); document.write( " * Interpretation: When 1,500 bottles are sold, the profit is decreasing at a rate of $14 per additional bottle sold.
\n" ); document.write( "
\n" ); document.write( "
\n" );