document.write( "Question 1197579: The price - demand equation and the costfunction for the production of
\n" );
document.write( "honey is given, respectively, by
\n" );
document.write( "x = 5,000 - 100p and C(x) = 2,500 + 4x+ 0.01x2
\n" );
document.write( "where x is the number of bottles that can be sold at a price of $p per
\n" );
document.write( "bottle and C(x) is the total cost (in dollars) of producing x bottles.\r
\n" );
document.write( "\n" );
document.write( "a) Express the price p as a function of the demand x, and find the domain of
\n" );
document.write( "this function.
\n" );
document.write( "b) Find the marginal cost.
\n" );
document.write( "c) Find the revenue function and state its domain.
\n" );
document.write( "d) Find the marginal revenue.
\n" );
document.write( "e) Find R′(2,000) and R′(3,000) and interpret these quantities.
\n" );
document.write( "f) Find the profit function in terms of x.
\n" );
document.write( "g) Find the marginal profit.
\n" );
document.write( "h) Find P′(1,000) and P′(1,500) and interpret these quantities. \n" );
document.write( "
Algebra.Com's Answer #848355 by onyulee(41)![]() ![]() ![]() You can put this solution on YOUR website! \r \n" ); document.write( "\n" ); document.write( "**a) Express the price p as a function of the demand x, and find the domain of this function.**\r \n" ); document.write( "\n" ); document.write( "* Given: x = 5,000 - 100p \n" ); document.write( "* Solve for p: \n" ); document.write( " * 100p = 5,000 - x \n" ); document.write( " * p = (5,000 - x) / 100 \n" ); document.write( " * p = 50 - 0.01x\r \n" ); document.write( "\n" ); document.write( "* **Domain:** \n" ); document.write( " * The demand (x) must be non-negative (you can't sell a negative number of bottles). \n" ); document.write( " * The price (p) must also be non-negative. \n" ); document.write( " * \n" ); document.write( " * 50 - 0.01x ≥ 0 \n" ); document.write( " * 0.01x ≤ 50 \n" ); document.write( " * x ≤ 5,000\r \n" ); document.write( "\n" ); document.write( " * **Therefore, the domain of the price function is 0 ≤ x ≤ 5,000**\r \n" ); document.write( "\n" ); document.write( "**b) Find the marginal cost.**\r \n" ); document.write( "\n" ); document.write( "* **Marginal Cost:** The derivative of the cost function with respect to x. \n" ); document.write( "* C(x) = 2,500 + 4x + 0.01x^2 \n" ); document.write( "* C'(x) = 4 + 0.02x\r \n" ); document.write( "\n" ); document.write( "**c) Find the revenue function and state its domain.**\r \n" ); document.write( "\n" ); document.write( "* **Revenue (R) = Price (p) * Quantity (x)** \n" ); document.write( "* R(x) = p * x \n" ); document.write( "* R(x) = (50 - 0.01x) * x \n" ); document.write( "* R(x) = 50x - 0.01x^2\r \n" ); document.write( "\n" ); document.write( "* **Domain:** The domain of the revenue function is the same as the domain of the price function, which is 0 ≤ x ≤ 5,000.\r \n" ); document.write( "\n" ); document.write( "**d) Find the marginal revenue.**\r \n" ); document.write( "\n" ); document.write( "* **Marginal Revenue:** The derivative of the revenue function with respect to x. \n" ); document.write( "* R(x) = 50x - 0.01x^2 \n" ); document.write( "* R'(x) = 50 - 0.02x\r \n" ); document.write( "\n" ); document.write( "**e) Find R′(2,000) and R′(3,000) and interpret these quantities.**\r \n" ); document.write( "\n" ); document.write( "* R'(2,000) = 50 - 0.02 * 2,000 = 50 - 40 = 10 \n" ); document.write( " * When producing 2,000 bottles, the revenue is increasing at a rate of $10 per additional bottle.\r \n" ); document.write( "\n" ); document.write( "* R'(3,000) = 50 - 0.02 * 3,000 = 50 - 60 = -10 \n" ); document.write( " * When producing 3,000 bottles, the revenue is decreasing at a rate of $10 per additional bottle.\r \n" ); document.write( "\n" ); document.write( "**f) Find the profit function in terms of x.**\r \n" ); document.write( "\n" ); document.write( "* **Profit (P) = Revenue (R) - Cost (C)** \n" ); document.write( "* P(x) = R(x) - C(x) \n" ); document.write( "* P(x) = (50x - 0.01x^2) - (2,500 + 4x + 0.01x^2) \n" ); document.write( "* P(x) = 50x - 0.01x^2 - 2,500 - 4x - 0.01x^2 \n" ); document.write( "* P(x) = 46x - 0.02x^2 - 2,500\r \n" ); document.write( "\n" ); document.write( "**g) Find the marginal profit.**\r \n" ); document.write( "\n" ); document.write( "* **Marginal Profit:** The derivative of the profit function with respect to x. \n" ); document.write( "* P(x) = 46x - 0.02x^2 - 2,500 \n" ); document.write( "* P'(x) = 46 - 0.04x\r \n" ); document.write( "\n" ); document.write( "**h) Find P′(1,000) and P′(1,500) and interpret these quantities.**\r \n" ); document.write( "\n" ); document.write( "* P'(1,000) = 46 - 0.04 * 1,000 = 46 - 40 = 6 \n" ); document.write( " * When producing 1,000 bottles, the profit is increasing at a rate of $6 per additional bottle.\r \n" ); document.write( "\n" ); document.write( "* P'(1,500) = 46 - 0.04 * 1,500 = 46 - 60 = -14 \n" ); document.write( " * When producing 1,500 bottles, the profit is decreasing at a rate of $14 per additional bottle. \n" ); document.write( "**a) Express the price p as a function of the demand x, and find the domain of this function.**\r \n" ); document.write( "\n" ); document.write( "* **Solve the price-demand equation for p:** \n" ); document.write( " * x = 5,000 - 100p \n" ); document.write( " * 100p = 5,000 - x \n" ); document.write( " * p = (5,000 - x) / 100 \n" ); document.write( " * p = 50 - 0.01x\r \n" ); document.write( "\n" ); document.write( "* **Domain of the price function:** \n" ); document.write( " * The demand (x) must be non-negative (you cannot sell a negative number of bottles). \n" ); document.write( " * 0 ≤ x ≤ 5,000 (The maximum demand occurs when the price is 0)\r \n" ); document.write( "\n" ); document.write( "**b) Find the marginal cost.**\r \n" ); document.write( "\n" ); document.write( "* **Marginal Cost (MC):** The derivative of the cost function with respect to x. \n" ); document.write( " * MC = C'(x) = d/dx (2,500 + 4x + 0.01x²) \n" ); document.write( " * MC = 4 + 0.02x\r \n" ); document.write( "\n" ); document.write( "**c) Find the revenue function and state its domain.**\r \n" ); document.write( "\n" ); document.write( "* **Revenue (R):** Price per unit * Number of units sold \n" ); document.write( " * R(x) = p * x \n" ); document.write( " * R(x) = (50 - 0.01x) * x \n" ); document.write( " * R(x) = 50x - 0.01x²\r \n" ); document.write( "\n" ); document.write( "* **Domain of the revenue function:** \n" ); document.write( " * Same as the domain of the price function: 0 ≤ x ≤ 5,000\r \n" ); document.write( "\n" ); document.write( "**d) Find the marginal revenue.**\r \n" ); document.write( "\n" ); document.write( "* **Marginal Revenue (MR):** The derivative of the revenue function with respect to x. \n" ); document.write( " * MR = R'(x) = d/dx (50x - 0.01x²) \n" ); document.write( " * MR = 50 - 0.02x\r \n" ); document.write( "\n" ); document.write( "**e) Find R′(2,000) and R′(3,000) and interpret these quantities.**\r \n" ); document.write( "\n" ); document.write( "* **R'(2,000):** \n" ); document.write( " * R'(2,000) = 50 - 0.02 * 2,000 = 50 - 40 = 10 \n" ); document.write( " * Interpretation: When 2,000 bottles are sold, the revenue is increasing at a rate of $10 per additional bottle sold.\r \n" ); document.write( "\n" ); document.write( "* **R'(3,000):** \n" ); document.write( " * R'(3,000) = 50 - 0.02 * 3,000 = 50 - 60 = -10 \n" ); document.write( " * Interpretation: When 3,000 bottles are sold, the revenue is decreasing at a rate of $10 per additional bottle sold.\r \n" ); document.write( "\n" ); document.write( "**f) Find the profit function in terms of x.**\r \n" ); document.write( "\n" ); document.write( "* **Profit (P):** Revenue - Cost \n" ); document.write( " * P(x) = R(x) - C(x) \n" ); document.write( " * P(x) = (50x - 0.01x²) - (2,500 + 4x + 0.01x²) \n" ); document.write( " * P(x) = 46x - 0.02x² - 2,500\r \n" ); document.write( "\n" ); document.write( "**g) Find the marginal profit.**\r \n" ); document.write( "\n" ); document.write( "* **Marginal Profit (MP):** The derivative of the profit function with respect to x. \n" ); document.write( " * MP = P'(x) = d/dx (46x - 0.02x² - 2,500) \n" ); document.write( " * MP = 46 - 0.04x\r \n" ); document.write( "\n" ); document.write( "**h) Find P′(1,000) and P′(1,500) and interpret these quantities.**\r \n" ); document.write( "\n" ); document.write( "* **P'(1,000):** \n" ); document.write( " * P'(1,000) = 46 - 0.04 * 1,000 = 46 - 40 = 6 \n" ); document.write( " * Interpretation: When 1,000 bottles are sold, the profit is increasing at a rate of $6 per additional bottle sold.\r \n" ); document.write( "\n" ); document.write( "* **P'(1,500):** \n" ); document.write( " * P'(1,500) = 46 - 0.04 * 1,500 = 46 - 60 = -14 \n" ); document.write( " * Interpretation: When 1,500 bottles are sold, the profit is decreasing at a rate of $14 per additional bottle sold. \n" ); document.write( " \n" ); document.write( " |