document.write( "Question 1198171: Consider a chef who must plan a banquet. Possible menu items and the cost data presented below:
\n" ); document.write( "Item Cost ($) Per Serving
\n" ); document.write( "Appetizers\r
\n" ); document.write( "\n" ); document.write( "A 0.25
\n" ); document.write( "B 0.30
\n" ); document.write( "C 0.35\r
\n" ); document.write( "\n" ); document.write( "Salads\r
\n" ); document.write( "\n" ); document.write( "X 0.25
\n" ); document.write( "Y 0.45\r
\n" ); document.write( "\n" ); document.write( "Vegetables\r
\n" ); document.write( "\n" ); document.write( "P 0.20
\n" ); document.write( "Q 0.15
\n" ); document.write( "R 0.40\r
\n" ); document.write( "\n" ); document.write( "Main Meals\r
\n" ); document.write( "\n" ); document.write( "1 1.25
\n" ); document.write( "2 2.50
\n" ); document.write( "3 3.00\r
\n" ); document.write( "\n" ); document.write( "The banquet is to consist of:
\n" ); document.write( "A. at least one appetizer;
\n" ); document.write( "B. exactly one salad;
\n" ); document.write( "C. at least one but no more than two vegetables; and
\n" ); document.write( "D. exactly one main meal.
\n" ); document.write( "The chef has been advised to select items from the menu which will minimize
\n" ); document.write( "total cost of the banquet. All decision variables take the form of the binary
\n" ); document.write( "numbers only.\r
\n" ); document.write( "\n" ); document.write( "Instructions:
\n" ); document.write( "i. Write mathematical form of the inequalities of all the constraints. (5)
\n" ); document.write( "ii. Write mathematical form objective function (5)
\n" ); document.write( "iii. Tabulate your problem into the solver (5)
\n" ); document.write( "iv. Using Excel Solver, solve the problem and interpret your solution (5)
\n" ); document.write( "

Algebra.Com's Answer #848329 by onyulee(41)\"\" \"About 
You can put this solution on YOUR website!
Certainly, let's formulate the banquet planning problem and solve it using Excel Solver.\r
\n" ); document.write( "\n" ); document.write( "**i. Mathematical Inequalities (Constraints)**\r
\n" ); document.write( "\n" ); document.write( "* **Appetizer Constraint:**
\n" ); document.write( " * A + B + C ≥ 1 \r
\n" ); document.write( "\n" ); document.write( "* **Salad Constraint:**
\n" ); document.write( " * X + Y = 1 \r
\n" ); document.write( "\n" ); document.write( "* **Vegetable Constraints:**
\n" ); document.write( " * P + Q + R ≥ 1
\n" ); document.write( " * P + Q + R ≤ 2\r
\n" ); document.write( "\n" ); document.write( "* **Main Meal Constraint:**
\n" ); document.write( " * 1 + 2 + 3 = 1 \r
\n" ); document.write( "\n" ); document.write( "* **Binary Variables:**
\n" ); document.write( " * A, B, C, X, Y, P, Q, R, 1, 2, 3 ∈ {0, 1} \r
\n" ); document.write( "\n" ); document.write( "**ii. Objective Function (Minimize Cost)**\r
\n" ); document.write( "\n" ); document.write( "* Cost = 0.25A + 0.30B + 0.35C + 0.25X + 0.45Y + 0.20P + 0.15Q + 0.40R + 1.25*1 + 2.50*2 + 3.00*3 \r
\n" ); document.write( "\n" ); document.write( "**iii. Tabulation in Excel Solver**\r
\n" ); document.write( "\n" ); document.write( "1. **Set up the Excel Sheet:**
\n" ); document.write( " * Create a table with the following columns:
\n" ); document.write( " * Item
\n" ); document.write( " * Cost
\n" ); document.write( " * Decision Variable (Binary)
\n" ); document.write( " * List all items (A, B, C, X, Y, P, Q, R, 1, 2, 3) and their corresponding costs.
\n" ); document.write( " * In the \"Decision Variable\" column, enter a cell for each item (e.g., B2 for item A, B3 for item B, etc.).\r
\n" ); document.write( "\n" ); document.write( "2. **Define Decision Variables:**
\n" ); document.write( " * In the \"Decision Variable\" cells, enter 0 or 1. \r
\n" ); document.write( "\n" ); document.write( "3. **Calculate Total Cost:**
\n" ); document.write( " * In a separate cell, use the SUMPRODUCT function to calculate the total cost based on the decision variables and costs:
\n" ); document.write( " * `=SUMPRODUCT(B2:B11,C2:C11)` \r
\n" ); document.write( "\n" ); document.write( "4. **Set up Constraints:**
\n" ); document.write( " * In separate cells, create formulas to represent each constraint:
\n" ); document.write( " * Appetizer: `=SUM(B2:B4)`
\n" ); document.write( " * Salad: `=SUM(B5:B6)`
\n" ); document.write( " * Vegetables: `=SUM(B7:B9)`
\n" ); document.write( " * Main Meal: `=SUM(B10:B12)` \r
\n" ); document.write( "\n" ); document.write( "5. **Open Solver:**
\n" ); document.write( " * Go to \"Data\" -> \"Solver\".\r
\n" ); document.write( "\n" ); document.write( "6. **Set Objective:**
\n" ); document.write( " * Set the \"Set Objective\" cell to the cell containing the total cost formula. \r
\n" ); document.write( "\n" ); document.write( "7. **Select \"Min\"** to minimize the cost.\r
\n" ); document.write( "\n" ); document.write( "8. **By Changing Variable Cells:**
\n" ); document.write( " * Select the range of cells containing the decision variables (e.g., B2:B12).\r
\n" ); document.write( "\n" ); document.write( "9. **Add Constraints:**
\n" ); document.write( " * Click \"Add\" to add each constraint:
\n" ); document.write( " * Appetizer: `=SUM(B2:B4)>=1`
\n" ); document.write( " * Salad: `=SUM(B5:B6)=1`
\n" ); document.write( " * Vegetables: `=SUM(B7:B9)>=1`
\n" ); document.write( " * Vegetables: `=SUM(B7:B9)<=2`
\n" ); document.write( " * Main Meal: `=SUM(B10:B12)=1`
\n" ); document.write( " * Binary Constraints:
\n" ); document.write( " * For each decision variable cell, add a constraint: `B2=0` or `B2=1` \r
\n" ); document.write( "\n" ); document.write( "10. **Select Solving Method:**
\n" ); document.write( " * Choose \"Simplex LP\" or \"GRG Nonlinear\" as the solving method.\r
\n" ); document.write( "\n" ); document.write( "11. **Solve:**
\n" ); document.write( " * Click \"Solve\".\r
\n" ); document.write( "\n" ); document.write( "**iv. Interpret Solution**\r
\n" ); document.write( "\n" ); document.write( "* Solver will find the optimal combination of menu items that minimizes the total cost while satisfying all the constraints.
\n" ); document.write( "* The \"Decision Variable\" cells will indicate which items to include in the banquet (1 = include, 0 = exclude).
\n" ); document.write( "* The \"Total Cost\" cell will display the minimum cost of the banquet.\r
\n" ); document.write( "\n" ); document.write( "**Note:**\r
\n" ); document.write( "\n" ); document.write( "* The specific steps and interface may vary slightly depending on your Excel version.
\n" ); document.write( "* This solution provides a framework. You'll need to adapt it to your specific Excel setup.\r
\n" ); document.write( "\n" ); document.write( "By following these steps, you can effectively use Excel Solver to determine the most cost-effective menu for the banquet.
\n" ); document.write( "
\n" ); document.write( "
\n" );