document.write( "Question 1198171: Consider a chef who must plan a banquet. Possible menu items and the cost data presented below:
\n" );
document.write( "Item Cost ($) Per Serving
\n" );
document.write( "Appetizers\r
\n" );
document.write( "\n" );
document.write( "A 0.25
\n" );
document.write( "B 0.30
\n" );
document.write( "C 0.35\r
\n" );
document.write( "\n" );
document.write( "Salads\r
\n" );
document.write( "\n" );
document.write( "X 0.25
\n" );
document.write( "Y 0.45\r
\n" );
document.write( "\n" );
document.write( "Vegetables\r
\n" );
document.write( "\n" );
document.write( "P 0.20
\n" );
document.write( "Q 0.15
\n" );
document.write( "R 0.40\r
\n" );
document.write( "\n" );
document.write( "Main Meals\r
\n" );
document.write( "\n" );
document.write( "1 1.25
\n" );
document.write( "2 2.50
\n" );
document.write( "3 3.00\r
\n" );
document.write( "\n" );
document.write( "The banquet is to consist of:
\n" );
document.write( "A. at least one appetizer;
\n" );
document.write( "B. exactly one salad;
\n" );
document.write( "C. at least one but no more than two vegetables; and
\n" );
document.write( "D. exactly one main meal.
\n" );
document.write( "The chef has been advised to select items from the menu which will minimize
\n" );
document.write( "total cost of the banquet. All decision variables take the form of the binary
\n" );
document.write( "numbers only.\r
\n" );
document.write( "\n" );
document.write( "Instructions:
\n" );
document.write( "i. Write mathematical form of the inequalities of all the constraints. (5)
\n" );
document.write( "ii. Write mathematical form objective function (5)
\n" );
document.write( "iii. Tabulate your problem into the solver (5)
\n" );
document.write( "iv. Using Excel Solver, solve the problem and interpret your solution (5) \n" );
document.write( "
Algebra.Com's Answer #848329 by onyulee(41)![]() ![]() ![]() You can put this solution on YOUR website! Certainly, let's formulate the banquet planning problem and solve it using Excel Solver.\r \n" ); document.write( "\n" ); document.write( "**i. Mathematical Inequalities (Constraints)**\r \n" ); document.write( "\n" ); document.write( "* **Appetizer Constraint:** \n" ); document.write( " * A + B + C ≥ 1 \r \n" ); document.write( "\n" ); document.write( "* **Salad Constraint:** \n" ); document.write( " * X + Y = 1 \r \n" ); document.write( "\n" ); document.write( "* **Vegetable Constraints:** \n" ); document.write( " * P + Q + R ≥ 1 \n" ); document.write( " * P + Q + R ≤ 2\r \n" ); document.write( "\n" ); document.write( "* **Main Meal Constraint:** \n" ); document.write( " * 1 + 2 + 3 = 1 \r \n" ); document.write( "\n" ); document.write( "* **Binary Variables:** \n" ); document.write( " * A, B, C, X, Y, P, Q, R, 1, 2, 3 ∈ {0, 1} \r \n" ); document.write( "\n" ); document.write( "**ii. Objective Function (Minimize Cost)**\r \n" ); document.write( "\n" ); document.write( "* Cost = 0.25A + 0.30B + 0.35C + 0.25X + 0.45Y + 0.20P + 0.15Q + 0.40R + 1.25*1 + 2.50*2 + 3.00*3 \r \n" ); document.write( "\n" ); document.write( "**iii. Tabulation in Excel Solver**\r \n" ); document.write( "\n" ); document.write( "1. **Set up the Excel Sheet:** \n" ); document.write( " * Create a table with the following columns: \n" ); document.write( " * Item \n" ); document.write( " * Cost \n" ); document.write( " * Decision Variable (Binary) \n" ); document.write( " * List all items (A, B, C, X, Y, P, Q, R, 1, 2, 3) and their corresponding costs. \n" ); document.write( " * In the \"Decision Variable\" column, enter a cell for each item (e.g., B2 for item A, B3 for item B, etc.).\r \n" ); document.write( "\n" ); document.write( "2. **Define Decision Variables:** \n" ); document.write( " * In the \"Decision Variable\" cells, enter 0 or 1. \r \n" ); document.write( "\n" ); document.write( "3. **Calculate Total Cost:** \n" ); document.write( " * In a separate cell, use the SUMPRODUCT function to calculate the total cost based on the decision variables and costs: \n" ); document.write( " * `=SUMPRODUCT(B2:B11,C2:C11)` \r \n" ); document.write( "\n" ); document.write( "4. **Set up Constraints:** \n" ); document.write( " * In separate cells, create formulas to represent each constraint: \n" ); document.write( " * Appetizer: `=SUM(B2:B4)` \n" ); document.write( " * Salad: `=SUM(B5:B6)` \n" ); document.write( " * Vegetables: `=SUM(B7:B9)` \n" ); document.write( " * Main Meal: `=SUM(B10:B12)` \r \n" ); document.write( "\n" ); document.write( "5. **Open Solver:** \n" ); document.write( " * Go to \"Data\" -> \"Solver\".\r \n" ); document.write( "\n" ); document.write( "6. **Set Objective:** \n" ); document.write( " * Set the \"Set Objective\" cell to the cell containing the total cost formula. \r \n" ); document.write( "\n" ); document.write( "7. **Select \"Min\"** to minimize the cost.\r \n" ); document.write( "\n" ); document.write( "8. **By Changing Variable Cells:** \n" ); document.write( " * Select the range of cells containing the decision variables (e.g., B2:B12).\r \n" ); document.write( "\n" ); document.write( "9. **Add Constraints:** \n" ); document.write( " * Click \"Add\" to add each constraint: \n" ); document.write( " * Appetizer: `=SUM(B2:B4)>=1` \n" ); document.write( " * Salad: `=SUM(B5:B6)=1` \n" ); document.write( " * Vegetables: `=SUM(B7:B9)>=1` \n" ); document.write( " * Vegetables: `=SUM(B7:B9)<=2` \n" ); document.write( " * Main Meal: `=SUM(B10:B12)=1` \n" ); document.write( " * Binary Constraints: \n" ); document.write( " * For each decision variable cell, add a constraint: `B2=0` or `B2=1` \r \n" ); document.write( "\n" ); document.write( "10. **Select Solving Method:** \n" ); document.write( " * Choose \"Simplex LP\" or \"GRG Nonlinear\" as the solving method.\r \n" ); document.write( "\n" ); document.write( "11. **Solve:** \n" ); document.write( " * Click \"Solve\".\r \n" ); document.write( "\n" ); document.write( "**iv. Interpret Solution**\r \n" ); document.write( "\n" ); document.write( "* Solver will find the optimal combination of menu items that minimizes the total cost while satisfying all the constraints. \n" ); document.write( "* The \"Decision Variable\" cells will indicate which items to include in the banquet (1 = include, 0 = exclude). \n" ); document.write( "* The \"Total Cost\" cell will display the minimum cost of the banquet.\r \n" ); document.write( "\n" ); document.write( "**Note:**\r \n" ); document.write( "\n" ); document.write( "* The specific steps and interface may vary slightly depending on your Excel version. \n" ); document.write( "* This solution provides a framework. You'll need to adapt it to your specific Excel setup.\r \n" ); document.write( "\n" ); document.write( "By following these steps, you can effectively use Excel Solver to determine the most cost-effective menu for the banquet. \n" ); document.write( " \n" ); document.write( " |