document.write( "Question 1198241: A square pyramid whose lateral edge is 3 ¼ times its base edge can hold 250 cubic inches of sand when level full. How many square inches are there in its lateral surface? \n" ); document.write( "
Algebra.Com's Answer #848328 by onyulee(41)\"\" \"About 
You can put this solution on YOUR website!
**1. Define Variables**\r
\n" ); document.write( "\n" ); document.write( "* Let 's' be the side length of the square base.
\n" ); document.write( "* Let 'l' be the length of the lateral edge (l = 3.25s).
\n" ); document.write( "* Let 'h' be the height of the pyramid.\r
\n" ); document.write( "\n" ); document.write( "**2. Find the Volume of the Pyramid**\r
\n" ); document.write( "\n" ); document.write( "The volume of a square pyramid is given by:\r
\n" ); document.write( "\n" ); document.write( "* Volume = (1/3) * Base Area * Height
\n" ); document.write( "* 250 = (1/3) * s^2 * h\r
\n" ); document.write( "\n" ); document.write( "**3. Find the Height of the Pyramid**\r
\n" ); document.write( "\n" ); document.write( "* We know that the lateral edge, base edge, and height form a right triangle.
\n" ); document.write( "* Using the Pythagorean Theorem:
\n" ); document.write( " * h^2 + (s/2)^2 = l^2
\n" ); document.write( " * h^2 + (s^2)/4 = (3.25s)^2
\n" ); document.write( " * h^2 = (3.25s)^2 - (s^2)/4
\n" ); document.write( " * h^2 = 10.5625s^2 - 0.25s^2
\n" ); document.write( " * h^2 = 10.3125s^2
\n" ); document.write( " * h = √(10.3125s^2)
\n" ); document.write( " * h = s√10.3125\r
\n" ); document.write( "\n" ); document.write( "**4. Substitute 'h' in the Volume Equation**\r
\n" ); document.write( "\n" ); document.write( "* 250 = (1/3) * s^2 * (s√10.3125)
\n" ); document.write( "* 250 = (√10.3125/3) * s^3
\n" ); document.write( "* s^3 = 250 / (√10.3125/3)
\n" ); document.write( "* s^3 ≈ 22.81
\n" ); document.write( "* s ≈ 2.84 inches\r
\n" ); document.write( "\n" ); document.write( "**5. Calculate the Lateral Edge Length**\r
\n" ); document.write( "\n" ); document.write( "* l = 3.25s
\n" ); document.write( "* l = 3.25 * 2.84
\n" ); document.write( "* l ≈ 9.21 inches\r
\n" ); document.write( "\n" ); document.write( "**6. Calculate the Slant Height**\r
\n" ); document.write( "\n" ); document.write( "* Let 'L' be the slant height.
\n" ); document.write( "* L^2 = h^2 + (s/2)^2
\n" ); document.write( "* L^2 = (s√10.3125)^2 + (s/2)^2
\n" ); document.write( "* L^2 = 10.3125s^2 + 0.25s^2
\n" ); document.write( "* L^2 = 10.5625s^2
\n" ); document.write( "* L = s√10.5625
\n" ); document.write( "* L = 2.84 * √10.5625
\n" ); document.write( "* L ≈ 9.31 inches\r
\n" ); document.write( "\n" ); document.write( "**7. Calculate the Lateral Surface Area**\r
\n" ); document.write( "\n" ); document.write( "* Lateral Surface Area = 4 * (1/2) * Base Edge * Slant Height
\n" ); document.write( "* Lateral Surface Area = 4 * (1/2) * s * L
\n" ); document.write( "* Lateral Surface Area = 4 * (1/2) * 2.84 * 9.31
\n" ); document.write( "* Lateral Surface Area ≈ 52.89 square inches\r
\n" ); document.write( "\n" ); document.write( "**Therefore, the lateral surface area of the square pyramid is approximately 53 square inches.**
\n" ); document.write( "
\n" ); document.write( "
\n" );