document.write( "Question 1198348: A random variable X has support containing only two numbers. Its
\n" ); document.write( "expected value is EX = 5. Its variance is Var X = 3. Give an example of the
\n" ); document.write( "pmf of such a random variable
\n" ); document.write( "

Algebra.Com's Answer #848317 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
**1. Define the Random Variable**\r
\n" ); document.write( "\n" ); document.write( "* Let X be the random variable representing the possible values of the random variable.
\n" ); document.write( "* Since X has support containing only two numbers, let's assume those numbers are 'a' and 'b'.\r
\n" ); document.write( "\n" ); document.write( "**2. Define the Probability Mass Function (PMF)**\r
\n" ); document.write( "\n" ); document.write( "* Let P(X = a) = p
\n" ); document.write( "* Let P(X = b) = 1 - p \r
\n" ); document.write( "\n" ); document.write( "**3. Set up Equations Based on Given Information**\r
\n" ); document.write( "\n" ); document.write( "* **Expected Value (E[X]):**
\n" ); document.write( " * E[X] = a * P(X = a) + b * P(X = b)
\n" ); document.write( " * 5 = a * p + b * (1 - p) \r
\n" ); document.write( "\n" ); document.write( "* **Variance (Var(X)):**
\n" ); document.write( " * Var(X) = E[X²] - (E[X])²
\n" ); document.write( " * 3 = E[X²] - 5²
\n" ); document.write( " * E[X²] = 28 \r
\n" ); document.write( "\n" ); document.write( " * E[X²] = a² * P(X = a) + b² * P(X = b)
\n" ); document.write( " * 28 = a² * p + b² * (1 - p)\r
\n" ); document.write( "\n" ); document.write( "**4. Solve the System of Equations**\r
\n" ); document.write( "\n" ); document.write( "* We have two equations and two unknowns (a, b, and p).
\n" ); document.write( "* Solve these equations simultaneously to find the values of 'a', 'b', and 'p'.\r
\n" ); document.write( "\n" ); document.write( "**Example Solution**\r
\n" ); document.write( "\n" ); document.write( "* **Let's assume:**
\n" ); document.write( " * a = 2
\n" ); document.write( " * b = 8 \r
\n" ); document.write( "\n" ); document.write( "* **Solve for p using E[X] = 5:**
\n" ); document.write( " * 5 = 2 * p + 8 * (1 - p)
\n" ); document.write( " * 5 = 2p + 8 - 8p
\n" ); document.write( " * 6p = 3
\n" ); document.write( " * p = 1/2 \r
\n" ); document.write( "\n" ); document.write( "* **Verify Var(X) = 3:**
\n" ); document.write( " * E[X²] = 2² * (1/2) + 8² * (1/2) = 34
\n" ); document.write( " * Var(X) = E[X²] - (E[X])² = 34 - 5² = 3 \r
\n" ); document.write( "\n" ); document.write( "**Therefore, one possible PMF for X is:**\r
\n" ); document.write( "\n" ); document.write( "* P(X = 2) = 1/2
\n" ); document.write( "* P(X = 8) = 1/2\r
\n" ); document.write( "\n" ); document.write( "**Note:** This is just one possible solution. There might be other combinations of 'a', 'b', and 'p' that also satisfy the given conditions for expected value and variance.
\n" ); document.write( "
\n" ); document.write( "
\n" );