document.write( "Question 1198377: Assume that your widget manufacturing company has a total annual demand of N widgets per year evenly distributed across the year. Each widget cost $b dollars in material and manufacturing costs to make. Every time you do a production run to make some widgets, you incur a set-up cost of P dollars. Any widgets awaiting sale must be stored and thus incur an average storage fee of c dollars per widget per year. Let x be the size of each production run (i.e. x is the number of widgets per production run).\r
\n" );
document.write( "\n" );
document.write( "Write a cost function C(x) and explain each term in the equation and how it was determined.
\n" );
document.write( "Write down any constraints on the allowable values of x.
\n" );
document.write( "Determine a formula for the value of x that minimizes total annual cost. Show all of your work.
\n" );
document.write( "Prove that your formula actually corresponds to the global minimum cost.
\n" );
document.write( "Write down a formula for the number of production runs per year as a function of x. \n" );
document.write( "
Algebra.Com's Answer #848295 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! ### **1. Cost Function \( C(x) \):**\r \n" ); document.write( "\n" ); document.write( "The total cost \( C(x) \) includes three components: \n" ); document.write( "1. **Material and manufacturing cost**: \n" ); document.write( " - The total number of widgets demanded annually is \( N \). \n" ); document.write( " - Each widget costs \( b \) dollars to make. \n" ); document.write( " - The **total manufacturing cost** is: \n" ); document.write( " \[ \n" ); document.write( " \text{Manufacturing Cost} = N \cdot b \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "2. **Setup cost**: \n" ); document.write( " - A production run is done every \( x \) widgets. \n" ); document.write( " - The total number of production runs per year is \( \frac{N}{x} \) (since \( N \) widgets are needed annually, and \( x \) widgets are produced per run). \n" ); document.write( " - Each production run incurs a setup cost \( P \). \n" ); document.write( " - The **total setup cost** is: \n" ); document.write( " \[ \n" ); document.write( " \text{Setup Cost} = \frac{N}{x} \cdot P \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "3. **Storage cost**: \n" ); document.write( " - Widgets are produced in batches of \( x \) and consumed uniformly over the year. \n" ); document.write( " - The average number of widgets stored at any time is \( \frac{x}{2} \) (half of the production run, assuming constant consumption). \n" ); document.write( " - The storage cost per widget per year is \( c \). \n" ); document.write( " - The **total storage cost** is: \n" ); document.write( " \[ \n" ); document.write( " \text{Storage Cost} = \frac{x}{2} \cdot c \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "Combining these components, the total cost function is: \n" ); document.write( "\[ \n" ); document.write( "C(x) = N \cdot b + \frac{N}{x} \cdot P + \frac{x}{2} \cdot c \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### **2. Constraints on \( x \):**\r \n" ); document.write( "\n" ); document.write( "1. \( x > 0 \): The production run size must be positive. \n" ); document.write( "2. \( x \leq N \): The production run size cannot exceed the total annual demand.\r \n" ); document.write( "\n" ); document.write( "Thus, \( x \) must satisfy: \n" ); document.write( "\[ \n" ); document.write( "0 < x \leq N \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### **3. Minimizing \( C(x) \):**\r \n" ); document.write( "\n" ); document.write( "To minimize \( C(x) \), take the derivative of \( C(x) \) with respect to \( x \) and set it to zero.\r \n" ); document.write( "\n" ); document.write( "\[ \n" ); document.write( "C(x) = N \cdot b + \frac{N}{x} \cdot P + \frac{x}{2} \cdot c \n" ); document.write( "\] \n" ); document.write( "\[ \n" ); document.write( "\frac{dC}{dx} = -\frac{N \cdot P}{x^2} + \frac{c}{2} \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Set \( \frac{dC}{dx} = 0 \): \n" ); document.write( "\[ \n" ); document.write( "-\frac{N \cdot P}{x^2} + \frac{c}{2} = 0 \n" ); document.write( "\] \n" ); document.write( "\[ \n" ); document.write( "\frac{N \cdot P}{x^2} = \frac{c}{2} \n" ); document.write( "\] \n" ); document.write( "\[ \n" ); document.write( "x^2 = \frac{2 \cdot N \cdot P}{c} \n" ); document.write( "\] \n" ); document.write( "\[ \n" ); document.write( "x = \sqrt{\frac{2 \cdot N \cdot P}{c}} \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### **4. Verifying Minimum:**\r \n" ); document.write( "\n" ); document.write( "To confirm that this value of \( x \) gives a global minimum, examine the second derivative: \n" ); document.write( "\[ \n" ); document.write( "\frac{d^2C}{dx^2} = \frac{2N \cdot P}{x^3} \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "For \( x > 0 \), \( \frac{d^2C}{dx^2} > 0 \), indicating that \( C(x) \) is convex and has a global minimum at \( x = \sqrt{\frac{2 \cdot N \cdot P}{c}} \).\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### **5. Number of Production Runs per Year:**\r \n" ); document.write( "\n" ); document.write( "The number of production runs per year is: \n" ); document.write( "\[ \n" ); document.write( "\text{Production Runs} = \frac{N}{x} \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "Substitute \( x = \sqrt{\frac{2 \cdot N \cdot P}{c}} \): \n" ); document.write( "\[ \n" ); document.write( "\text{Production Runs} = \frac{N}{\sqrt{\frac{2 \cdot N \cdot P}{c}}} = \sqrt{\frac{N \cdot c}{2 \cdot P}} \n" ); document.write( "\]\r \n" ); document.write( "\n" ); document.write( "---\r \n" ); document.write( "\n" ); document.write( "### **Summary of Results:**\r \n" ); document.write( "\n" ); document.write( "1. **Cost Function**: \n" ); document.write( " \[ \n" ); document.write( " C(x) = N \cdot b + \frac{N \cdot P}{x} + \frac{x \cdot c}{2} \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "2. **Optimal Production Run Size**: \n" ); document.write( " \[ \n" ); document.write( " x = \sqrt{\frac{2 \cdot N \cdot P}{c}} \n" ); document.write( " \]\r \n" ); document.write( "\n" ); document.write( "3. **Number of Production Runs per Year**: \n" ); document.write( " \[ \n" ); document.write( " \text{Production Runs} = \sqrt{\frac{N \cdot c}{2 \cdot P}} \n" ); document.write( " \] \n" ); document.write( " |