document.write( "Question 1198377: Assume that your widget manufacturing company has a total annual demand of N widgets per year evenly distributed across the year. Each widget cost $b dollars in material and manufacturing costs to make. Every time you do a production run to make some widgets, you incur a set-up cost of P dollars. Any widgets awaiting sale must be stored and thus incur an average storage fee of c dollars per widget per year. Let x be the size of each production run (i.e. x is the number of widgets per production run).\r
\n" ); document.write( "\n" ); document.write( "Write a cost function C(x) and explain each term in the equation and how it was determined.
\n" ); document.write( "Write down any constraints on the allowable values of x.
\n" ); document.write( "Determine a formula for the value of x that minimizes total annual cost. Show all of your work.
\n" ); document.write( "Prove that your formula actually corresponds to the global minimum cost.
\n" ); document.write( "Write down a formula for the number of production runs per year as a function of x.
\n" ); document.write( "

Algebra.Com's Answer #848295 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
### **1. Cost Function \( C(x) \):**\r
\n" ); document.write( "\n" ); document.write( "The total cost \( C(x) \) includes three components:
\n" ); document.write( "1. **Material and manufacturing cost**:
\n" ); document.write( " - The total number of widgets demanded annually is \( N \).
\n" ); document.write( " - Each widget costs \( b \) dollars to make.
\n" ); document.write( " - The **total manufacturing cost** is:
\n" ); document.write( " \[
\n" ); document.write( " \text{Manufacturing Cost} = N \cdot b
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "2. **Setup cost**:
\n" ); document.write( " - A production run is done every \( x \) widgets.
\n" ); document.write( " - The total number of production runs per year is \( \frac{N}{x} \) (since \( N \) widgets are needed annually, and \( x \) widgets are produced per run).
\n" ); document.write( " - Each production run incurs a setup cost \( P \).
\n" ); document.write( " - The **total setup cost** is:
\n" ); document.write( " \[
\n" ); document.write( " \text{Setup Cost} = \frac{N}{x} \cdot P
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "3. **Storage cost**:
\n" ); document.write( " - Widgets are produced in batches of \( x \) and consumed uniformly over the year.
\n" ); document.write( " - The average number of widgets stored at any time is \( \frac{x}{2} \) (half of the production run, assuming constant consumption).
\n" ); document.write( " - The storage cost per widget per year is \( c \).
\n" ); document.write( " - The **total storage cost** is:
\n" ); document.write( " \[
\n" ); document.write( " \text{Storage Cost} = \frac{x}{2} \cdot c
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "Combining these components, the total cost function is:
\n" ); document.write( "\[
\n" ); document.write( "C(x) = N \cdot b + \frac{N}{x} \cdot P + \frac{x}{2} \cdot c
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### **2. Constraints on \( x \):**\r
\n" ); document.write( "\n" ); document.write( "1. \( x > 0 \): The production run size must be positive.
\n" ); document.write( "2. \( x \leq N \): The production run size cannot exceed the total annual demand.\r
\n" ); document.write( "\n" ); document.write( "Thus, \( x \) must satisfy:
\n" ); document.write( "\[
\n" ); document.write( "0 < x \leq N
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### **3. Minimizing \( C(x) \):**\r
\n" ); document.write( "\n" ); document.write( "To minimize \( C(x) \), take the derivative of \( C(x) \) with respect to \( x \) and set it to zero.\r
\n" ); document.write( "\n" ); document.write( "\[
\n" ); document.write( "C(x) = N \cdot b + \frac{N}{x} \cdot P + \frac{x}{2} \cdot c
\n" ); document.write( "\]
\n" ); document.write( "\[
\n" ); document.write( "\frac{dC}{dx} = -\frac{N \cdot P}{x^2} + \frac{c}{2}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "Set \( \frac{dC}{dx} = 0 \):
\n" ); document.write( "\[
\n" ); document.write( "-\frac{N \cdot P}{x^2} + \frac{c}{2} = 0
\n" ); document.write( "\]
\n" ); document.write( "\[
\n" ); document.write( "\frac{N \cdot P}{x^2} = \frac{c}{2}
\n" ); document.write( "\]
\n" ); document.write( "\[
\n" ); document.write( "x^2 = \frac{2 \cdot N \cdot P}{c}
\n" ); document.write( "\]
\n" ); document.write( "\[
\n" ); document.write( "x = \sqrt{\frac{2 \cdot N \cdot P}{c}}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### **4. Verifying Minimum:**\r
\n" ); document.write( "\n" ); document.write( "To confirm that this value of \( x \) gives a global minimum, examine the second derivative:
\n" ); document.write( "\[
\n" ); document.write( "\frac{d^2C}{dx^2} = \frac{2N \cdot P}{x^3}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "For \( x > 0 \), \( \frac{d^2C}{dx^2} > 0 \), indicating that \( C(x) \) is convex and has a global minimum at \( x = \sqrt{\frac{2 \cdot N \cdot P}{c}} \).\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### **5. Number of Production Runs per Year:**\r
\n" ); document.write( "\n" ); document.write( "The number of production runs per year is:
\n" ); document.write( "\[
\n" ); document.write( "\text{Production Runs} = \frac{N}{x}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "Substitute \( x = \sqrt{\frac{2 \cdot N \cdot P}{c}} \):
\n" ); document.write( "\[
\n" ); document.write( "\text{Production Runs} = \frac{N}{\sqrt{\frac{2 \cdot N \cdot P}{c}}} = \sqrt{\frac{N \cdot c}{2 \cdot P}}
\n" ); document.write( "\]\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### **Summary of Results:**\r
\n" ); document.write( "\n" ); document.write( "1. **Cost Function**:
\n" ); document.write( " \[
\n" ); document.write( " C(x) = N \cdot b + \frac{N \cdot P}{x} + \frac{x \cdot c}{2}
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "2. **Optimal Production Run Size**:
\n" ); document.write( " \[
\n" ); document.write( " x = \sqrt{\frac{2 \cdot N \cdot P}{c}}
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "3. **Number of Production Runs per Year**:
\n" ); document.write( " \[
\n" ); document.write( " \text{Production Runs} = \sqrt{\frac{N \cdot c}{2 \cdot P}}
\n" ); document.write( " \]
\n" ); document.write( "
\n" );