document.write( "Question 1199567: . In the School of ICT, one person in 80, on average, has blood of type O. If 200 student blood donors are
\n" ); document.write( "taken at random, find an approximation to the probability that they include at least five persons having
\n" ); document.write( "blood of type O.
\n" ); document.write( "How many student donors must be taken at random in order that the probability of including at least one
\n" ); document.write( "student donor of type O shall be 0.9 or more
\n" ); document.write( "

Algebra.Com's Answer #848275 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
To solve this, we approach each part of the problem systematically using probability theory and approximations.\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### **Part 1: Approximation for at least 5 persons with blood type O**\r
\n" ); document.write( "\n" ); document.write( "1. **Given data**:
\n" ); document.write( " - Probability of having type O blood: \( p = \frac{1}{80} = 0.0125 \)
\n" ); document.write( " - Sample size: \( n = 200 \)
\n" ); document.write( " - Random variable: Let \( X \) be the number of students with blood type O. \( X \) follows a **binomial distribution**:
\n" ); document.write( " \[
\n" ); document.write( " X \sim \text{Binomial}(n = 200, p = 0.0125)
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "2. **Normal approximation**:
\n" ); document.write( " Since \( n \) is large and \( p \) is small, we approximate \( X \) using a normal distribution with:
\n" ); document.write( " - Mean: \( \mu = n \cdot p = 200 \cdot 0.0125 = 2.5 \)
\n" ); document.write( " - Standard deviation: \( \sigma = \sqrt{n \cdot p \cdot (1 - p)} = \sqrt{200 \cdot 0.0125 \cdot 0.9875} \approx 1.567 \)
\n" ); document.write( " - Approximation: \( X \sim N(\mu = 2.5, \sigma = 1.567) \)\r
\n" ); document.write( "\n" ); document.write( "3. **Find \( P(X \geq 5) \):**
\n" ); document.write( " Using the normal approximation, apply continuity correction:
\n" ); document.write( " \[
\n" ); document.write( " P(X \geq 5) \approx P\left(Z \geq \frac{5 - 0.5 - \mu}{\sigma}\right)
\n" ); document.write( " \]
\n" ); document.write( " Substitute values:
\n" ); document.write( " \[
\n" ); document.write( " Z = \frac{5 - 0.5 - 2.5}{1.567} = \frac{2}{1.567} \approx 1.276
\n" ); document.write( " \]
\n" ); document.write( " From standard normal tables or a calculator:
\n" ); document.write( " \[
\n" ); document.write( " P(Z \geq 1.276) = 1 - P(Z \leq 1.276) \approx 1 - 0.8980 = 0.1020
\n" ); document.write( " \]
\n" ); document.write( " Thus:
\n" ); document.write( " \[
\n" ); document.write( " P(X \geq 5) \approx 0.1020
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### **Part 2: Number of donors for \( P(\text{at least one type O}) \geq 0.9 \)**\r
\n" ); document.write( "\n" ); document.write( "1. **Given data**:
\n" ); document.write( " - Probability of having type O blood: \( p = 0.0125 \)
\n" ); document.write( " - Required: Find \( n \) such that \( P(\text{at least one type O}) \geq 0.9 \).\r
\n" ); document.write( "\n" ); document.write( "2. **Complement rule**:
\n" ); document.write( " \[
\n" ); document.write( " P(\text{at least one type O}) = 1 - P(\text{none with type O})
\n" ); document.write( " \]
\n" ); document.write( " For \( P(\text{none with type O}) \), the probability is:
\n" ); document.write( " \[
\n" ); document.write( " P(\text{none with type O}) = (1 - p)^n
\n" ); document.write( " \]
\n" ); document.write( " Thus:
\n" ); document.write( " \[
\n" ); document.write( " 1 - (1 - p)^n \geq 0.9 \quad \Rightarrow \quad (1 - p)^n \leq 0.1
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "3. **Solve for \( n \):**
\n" ); document.write( " Taking the natural logarithm:
\n" ); document.write( " \[
\n" ); document.write( " \ln((1 - p)^n) \leq \ln(0.1) \quad \Rightarrow \quad n \cdot \ln(1 - p) \leq \ln(0.1)
\n" ); document.write( " \]
\n" ); document.write( " Substitute \( p = 0.0125 \):
\n" ); document.write( " \[
\n" ); document.write( " \ln(1 - 0.0125) \approx \ln(0.9875) \approx -0.0126
\n" ); document.write( " \]
\n" ); document.write( " \[
\n" ); document.write( " n \cdot (-0.0126) \leq \ln(0.1) \approx -2.3026
\n" ); document.write( " \]
\n" ); document.write( " \[
\n" ); document.write( " n \geq \frac{-2.3026}{-0.0126} \approx 183
\n" ); document.write( " \]\r
\n" ); document.write( "\n" ); document.write( "Thus, at least **183 donors** are required to ensure the probability of including at least one donor with type O blood is \( \geq 0.9 \).\r
\n" ); document.write( "\n" ); document.write( "---\r
\n" ); document.write( "\n" ); document.write( "### **Final Answers**:
\n" ); document.write( "1. Probability of at least 5 type O donors: **0.1020**.
\n" ); document.write( "2. Number of donors needed for \( P(\text{at least one type O}) \geq 0.9 \): **183**.
\n" ); document.write( "
\n" );