document.write( "Question 1198754: 9) The demand equation for a manufacturing product is p=20-0.25q, where q is the number of units and p is the price per unit.\r
\n" ); document.write( "\n" ); document.write( "(a) Write the Total Revenue (TR), Average Revenue (AR) and Marginal Revenue (MR) equations.
\n" ); document.write( "(b) At what value of q will there be the total revenue at its maximum?
\n" ); document.write( "(c) What price should the firm charge to achieve this maximum total revenue?
\n" ); document.write( "(d) What is the maximum total revenue?
\n" ); document.write( "
\n" ); document.write( "

Algebra.Com's Answer #848273 by CPhill(1959)\"\" \"About 
You can put this solution on YOUR website!
**a) Revenue Equations**\r
\n" ); document.write( "\n" ); document.write( "* **Total Revenue (TR):**
\n" ); document.write( " * TR = Price (p) * Quantity (q)
\n" ); document.write( " * TR = (20 - 0.25q) * q
\n" ); document.write( " * TR = 20q - 0.25q²\r
\n" ); document.write( "\n" ); document.write( "* **Average Revenue (AR):**
\n" ); document.write( " * AR = Total Revenue (TR) / Quantity (q)
\n" ); document.write( " * AR = (20q - 0.25q²) / q
\n" ); document.write( " * AR = 20 - 0.25q \r
\n" ); document.write( "\n" ); document.write( "* **Marginal Revenue (MR):**
\n" ); document.write( " * MR is the derivative of Total Revenue with respect to quantity (q):
\n" ); document.write( " * MR = d(TR)/dq = d(20q - 0.25q²)/dq
\n" ); document.write( " * MR = 20 - 0.5q\r
\n" ); document.write( "\n" ); document.write( "**b) Maximum Total Revenue**\r
\n" ); document.write( "\n" ); document.write( "* Total Revenue is maximized where the derivative of the TR function (MR) is equal to zero.
\n" ); document.write( " * 20 - 0.5q = 0
\n" ); document.write( " * 0.5q = 20
\n" ); document.write( " * q = 40\r
\n" ); document.write( "\n" ); document.write( "* **To confirm this is a maximum:**
\n" ); document.write( " * The second derivative of the TR function is -0.5, which is negative. This indicates that the point where MR = 0 is indeed a maximum.\r
\n" ); document.write( "\n" ); document.write( "**c) Price to Achieve Maximum Total Revenue**\r
\n" ); document.write( "\n" ); document.write( "* Substitute the value of q (40) into the demand equation:
\n" ); document.write( " * p = 20 - 0.25 * 40
\n" ); document.write( " * p = 20 - 10
\n" ); document.write( " * p = $10\r
\n" ); document.write( "\n" ); document.write( "**d) Maximum Total Revenue**\r
\n" ); document.write( "\n" ); document.write( "* Substitute the value of q (40) into the Total Revenue equation:
\n" ); document.write( " * TR = 20q - 0.25q²
\n" ); document.write( " * TR = 20 * 40 - 0.25 * 40²
\n" ); document.write( " * TR = 800 - 400
\n" ); document.write( " * TR = $400\r
\n" ); document.write( "\n" ); document.write( "**In Summary:**\r
\n" ); document.write( "\n" ); document.write( "* **Total Revenue (TR):** TR = 20q - 0.25q²
\n" ); document.write( "* **Average Revenue (AR):** AR = 20 - 0.25q
\n" ); document.write( "* **Marginal Revenue (MR):** MR = 20 - 0.5q
\n" ); document.write( "* **Quantity for Maximum Total Revenue:** q = 40 units
\n" ); document.write( "* **Price for Maximum Total Revenue:** p = $10
\n" ); document.write( "* **Maximum Total Revenue:** $400
\n" ); document.write( "
\n" ); document.write( "
\n" );