document.write( "Question 1198754: 9) The demand equation for a manufacturing product is p=20-0.25q, where q is the number of units and p is the price per unit.\r
\n" );
document.write( "\n" );
document.write( "(a) Write the Total Revenue (TR), Average Revenue (AR) and Marginal Revenue (MR) equations.
\n" );
document.write( "(b) At what value of q will there be the total revenue at its maximum?
\n" );
document.write( "(c) What price should the firm charge to achieve this maximum total revenue?
\n" );
document.write( "(d) What is the maximum total revenue?
\n" );
document.write( " \n" );
document.write( "
Algebra.Com's Answer #848273 by CPhill(1959)![]() ![]() You can put this solution on YOUR website! **a) Revenue Equations**\r \n" ); document.write( "\n" ); document.write( "* **Total Revenue (TR):** \n" ); document.write( " * TR = Price (p) * Quantity (q) \n" ); document.write( " * TR = (20 - 0.25q) * q \n" ); document.write( " * TR = 20q - 0.25q²\r \n" ); document.write( "\n" ); document.write( "* **Average Revenue (AR):** \n" ); document.write( " * AR = Total Revenue (TR) / Quantity (q) \n" ); document.write( " * AR = (20q - 0.25q²) / q \n" ); document.write( " * AR = 20 - 0.25q \r \n" ); document.write( "\n" ); document.write( "* **Marginal Revenue (MR):** \n" ); document.write( " * MR is the derivative of Total Revenue with respect to quantity (q): \n" ); document.write( " * MR = d(TR)/dq = d(20q - 0.25q²)/dq \n" ); document.write( " * MR = 20 - 0.5q\r \n" ); document.write( "\n" ); document.write( "**b) Maximum Total Revenue**\r \n" ); document.write( "\n" ); document.write( "* Total Revenue is maximized where the derivative of the TR function (MR) is equal to zero. \n" ); document.write( " * 20 - 0.5q = 0 \n" ); document.write( " * 0.5q = 20 \n" ); document.write( " * q = 40\r \n" ); document.write( "\n" ); document.write( "* **To confirm this is a maximum:** \n" ); document.write( " * The second derivative of the TR function is -0.5, which is negative. This indicates that the point where MR = 0 is indeed a maximum.\r \n" ); document.write( "\n" ); document.write( "**c) Price to Achieve Maximum Total Revenue**\r \n" ); document.write( "\n" ); document.write( "* Substitute the value of q (40) into the demand equation: \n" ); document.write( " * p = 20 - 0.25 * 40 \n" ); document.write( " * p = 20 - 10 \n" ); document.write( " * p = $10\r \n" ); document.write( "\n" ); document.write( "**d) Maximum Total Revenue**\r \n" ); document.write( "\n" ); document.write( "* Substitute the value of q (40) into the Total Revenue equation: \n" ); document.write( " * TR = 20q - 0.25q² \n" ); document.write( " * TR = 20 * 40 - 0.25 * 40² \n" ); document.write( " * TR = 800 - 400 \n" ); document.write( " * TR = $400\r \n" ); document.write( "\n" ); document.write( "**In Summary:**\r \n" ); document.write( "\n" ); document.write( "* **Total Revenue (TR):** TR = 20q - 0.25q² \n" ); document.write( "* **Average Revenue (AR):** AR = 20 - 0.25q \n" ); document.write( "* **Marginal Revenue (MR):** MR = 20 - 0.5q \n" ); document.write( "* **Quantity for Maximum Total Revenue:** q = 40 units \n" ); document.write( "* **Price for Maximum Total Revenue:** p = $10 \n" ); document.write( "* **Maximum Total Revenue:** $400 \n" ); document.write( " \n" ); document.write( " |